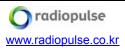


MG2455-F48 Datasheet

VER.1.0

The reproduction of this datasheet is NOT allowed without approval of RadioPulse Inc. All information and data contained in this datasheet are subject to change without notice. This publication supersedes and replaces all information previously supplied. RadioPulse Inc. has no responsibility to the consequence of using the patents describes in this document.

REVISION HISTORY


Version	Date	Description
VER.1.0	2007.10.1	First Official Version Release.

CONTENTS

1.		7
2.	APPLICATIONS	7
3.	ENHANCED FEATURES	8
4.	FEATURES	8
5.	PIN DESCRIPTION	
-	APPLICATION CIRCUIT	
6.		
7.	FUNCTIONAL DESCRIPTION	
	7.1. MEMORY ORGANIZATION	
	7.1.1. PROGRAM MEMORY	
	7.1.2. DATA MEMORY	21
	7.1.3. GENERAL FUNCTION REGISTERS	22
	7.1.4. SPECIAL FUNCTION REGISTERS	23
	7.2. RESET	
	7.3. CLOCK SOURCE	35
	7.4. INTERRUPT SCHEME	35
	7.5. POWER MANAGEMENT	41
	7.6. ON-CHIP PERIPHERALS	43
	7.6.1. TIMER 0/1	44
	7.6.2. TIMER 2/3, PWN 2/3	
	7.6.3. WATCHDOG TIMER	51
	7.6.4. SLEEP TIMER	
	7.6.5. INTERNAL RC OSCILLATOR	54
	7.6.6. UART0/1	
	7.6.7. SPI MASTER/SLAVE	63
	7.6.8. VOICE	
	7.6.9. RANDOM NUMBER GENERATOR (RNG)	
	7.6.10. QUAD DECODER	91
	7.6.11. INTERNAL VOLTAGE REGULATOR	94
	7.6.12. 4-CHANNEL 8-BIT SENSOR ADC	94
	7.6.13. ON-CHIP POWER-ON RESET	

	7.6.14.	TEMPERATURE SENSOR	97
	7.6.15.	BATTERY MONITORING	98
	7.7. MAC	2	99
	7.7.1.	RECEIVED MODE	101
	7.7.2.	TRANSMIT MODE	102
	7.7.3.	DATA ENCRYPTION AND DECRYPTION	103
	7.8. PHY	/	115
	7.8.1.	INTERRUPT	118
	7.8.2.	REGISTERS	119
		SYSTEM PROGRAMMING(ISP)	
	7.10. MG2	2455 INSTRUCTION SET SUMMARY	155
8.	ABSOL	UTE MAXIMUMRATINGS	158
8. 9.		LUTE MAXIMUMRATINGS	
	DC CH		159
9.	DC CH	ARACTERISTICS	159 160
9. 10.	DC CH ELECT DIGITA AC CH	ARACTERISTICS RICAL SPECIFICATIONS L I/O ARACTERISTIC	159 160 164 165
9. 10. 11.	DC CH ELECT DIGITA AC CH	ARACTERISTICS RICAL SPECIFICATIONS	159 160 164 165
9. 10. 11. 12.	DC CH ELECT DIGITA AC CH PACKA	ARACTERISTICS RICAL SPECIFICATIONS L I/O ARACTERISTIC	159 160 164 165 167
9. 10. 11. 12.	DC CH ELECT DIGITA AC CH PACKA 13.1. TRA	ARACTERISTICS	159 160 164 165 167 169

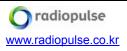

FIGURES

FIGURE 1. PINOUT TOP VIEW OF MG2455-F48(EXPOSED PAD 48-PIN QFN PACKAGE) 10	0
FIGURE 2. MG2455 APPLICATION CIRCUIT 14	4
FIGURE 3. FUNCTIONAL BLOCK DIAGRAM OF MG245517	
FIGURE 4. ADDRESS MAP OF PROGRAM MEMORY 19	
FIGURE 5. BANK SELECTION OF PROGRAM MEMORY	0
FIGURE 6. ADDRESS MAP OF DATA MEMORY 21	
FIGURE 7. GPRS ADDRESS MAP	
FIGURE 8. POWER SAVING MODE SETTING PROCEDURE	
FIGURE 9. TIMER0 MODE0	
FIGURE 10. TIMER0 MODE1	
FIGURE 11. TIMER0 MODE2 48	
FIGURE 12. TIMER0MODE3 48	
FIGURE 13. INTERNAL RCOSC	
FIGURE 14. SPI DATA TRANSFER	3
FIGURE 15. QUADRATURE SIGNAL BETWEEN XA AND XB SIGNAL	1
FIGURE 16. TEMPERATURE SENSOR CHARACTERISTICS	7
FIGURE 17. BATTERY MONITOR CHARACTERISTICS	
FIGURE 18. MAC BLOCK DIAGRAM	9
FIGURE 19. IEEE 802.15.4 FRAME FORMAT 100	0
FIGURE 20. IEEE 802.15.4 MODULATION	5
FIGURE 21. SPREADING SEQUENCE OF 32 CHIP 116	6
FIGURE 22. QUADRATURE MODULATED FINALLY 116	6
FIGURE 23. INTERNAL MCU CLOCK TIMING 165	
FIGURE 24. POR TIMING	5
FIGURE 25. RESET# TIMING	6
FIGURE 26. GPIO TIMING	6
FIGURE 27. PACKAGE DRAWING	8

TABLES

TABLE 1. PINOUT OVERVIEW	11
TABLE 2. OVERVIEW OF EXTERNAL COMPONE	NTS15
TABLE 3. SFR (SPECIAL FUNCTION REGISTER)	MAP23
TABLE 4. INTERRIPT DESCRIPTION	
TABLE 5.UART0 INTERRUPT LISTS	
TABLE 6.UART1 INTERRUPT LISTS	61
TABLE 7. PHY REGISTER ADDRESS MAP	
TABLE 8. TEST MODE SETTING	
TABLE 9. MDSTS FIELD	
TABLE 10. INSTRUCTION SET SUMMARY	

1. INTRODUCTION

MG2455 is a full single-chip solution that is compliant to the specification of IEEE802.15.4 and ZigBee specifications and is a complete wireless solution for ZigBee applications such as home control and sensor network. It consists of RF transceiver with baseband modem, a hardwired MAC and an embedded 8051 microcontroller with internal flash memory for application program. It also includes several general-purpose I/O pins and many peripheral devices such as timer and UART. The chip targets very low power and low voltage applications.

RadioPulse provides its customer with ZigBee stack software in compiled library. The user application software can be compiled using a popular C-language compiler such as Keil software or others.

2. APPLICATIONS

- Home Automation and Security
- Automatic Meter Reading
- Factory Automation and Motor Control
- Replacement for legacy wired UART
- Voice Applications
- Energy Management
- Remote Keyless Entry with Acknowledgement
- Low Power Telemetry
- Health-care equipments
- PC peripherals
- Toy

3. ENHANCED FEATURES

- Scalable Data Rate; 250kbps for ZigBee, 500kbps and 1Mbps for private applications.
- Voice Codec Support; µ-law/a-law/ADPCM
- High RF RX Sensitivity of -99dBm @1.5V
- High RF TX Power of +8dBm @1.5V
- 96KB Embedded Flash Memory for Program Space
- 8KB Data Memory
- Power Management Scheme with Deep Sleep Mode Support; under 1µA.

4. FEATURES

RF Transceiver

- Single-chip 2.4GHz RF Transceiver
- Low Power Consumption
- Low Operating Voltage of 1.5V
- High Sensitivity of –99dBm@1.5V
- No External T/R Switch and Filter needed
- On-chip VCO, LNA, and PA
- Programmable Output Power up to +8dBm@1.5V
- Direct Sequence Spread Spectrum
- O-QPSK Modulation
- Scalable Data Rate: 250Kbps for ZigBee, 500Kbps and 1Mbps for private application
- RSSI Measurement
- Compliant to IEEE802.15.4

Hardwired MAC

- Two 256-byte circular FIFOs
- FIFO management
- AES-128 Engine
- CRC-16 Computation and Check

i8051-Compatible Microcontroller

- Max. 12x Performance of standard 8051
- 96KB Embedded Flash Memory
- 8KB Data Memory
- 128-byte CPU dedicated Memory

- 1KB Boot ROM
- Dual DPTR Support
- Multi-Bank Support for 96KB Program Memory(3Banks)
- I2S/PCM Interface with two128-byte FIFOs
- µ-law/a-law/ADPCM Voice Codec
- Two High-Speed UARTs with Two 16-byte FIFOs (up to 1Mbps)
- 4 Timers/2 PWMs
- Watchdog Timer
- Sleep Timer
- Quadrature Signal Decoder
- 22 General Purpose I/Os
- Internal RC oscillator for Sleep Timer
- On-chip Power-on-Reset
- 4-channel 8-bit ADC
- SPI Master/Slave Interface
- ISP (In System Programming)
- Temperature Sensor

Clock Inputs

- 16MHz Crystal for System Clock
- 19.2MHz Crystal for System Clock (optional)
- 32.768KHz Crystal for Sleep Timer (optional)

Power

- 1.5V(Core)/3.0V(I/O) Operation
- Power Management Scheme with Deep Sleep Mode Support
- Two On-chip Voltage Regulator
- Battery Monitoring Support

Package

Lead-Free 48-pin QFN Package (7mm × 7mm)

5. PIN DESCRIPTION

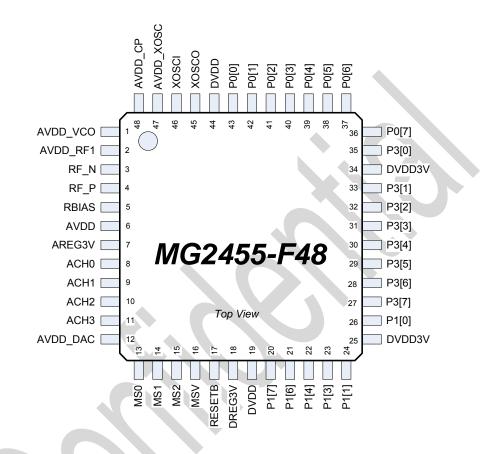


Figure 1. Pinout top view of MG2455-F48(Exposed Pad 48-pin QFN Package)

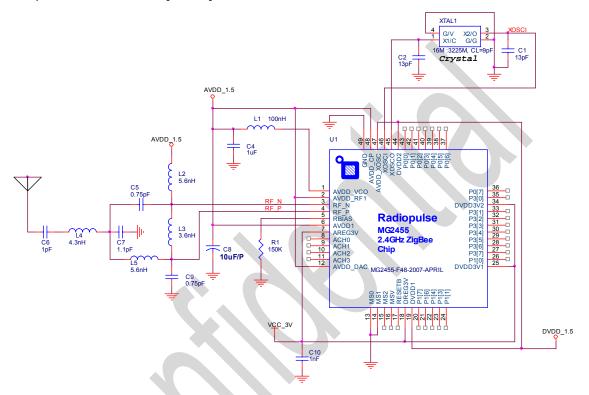
* Chip Ground(GND) is located at the bottom of a chip

The MG2455 Pinout overview is shown in [Table1].

Pin NO.	Pin Name	Pin Type	Pin Description
Exposed bottom	GND	Ground	Ground for RF, Analog, digital core, and IO
1	AVDD_VC O	Power	1.5V Power supply for VCO and Divider
2	AVDD_RF1	Power	1.5V Power supply for LNA and PA
3	RF_N	RF	Negative RF input/output signal to LNA / from PA in receive / transmit mode
4	RF_P	RF	Positive RF input/output signal to LNA / from PA in receive / transmit mode
5	RBIAS	Analog	External bias resistor
6	AVDD	Power (In/Out)	Output of Analog Internal Voltage Regulator (1.5V) / 1.5V Power supply for Mixer, VGA, and LPF (input mode @ No REG)
7	AVREG3V	Power	3.0V Power supply for Analog Internal Voltage Regulator
8	ACH0	Analog	Sensor ADC input
9	ACH1	Analog	Sensor ADC input
10	ACH2	Analog	Sensor ADC input
11	ACH3	Analog	Sensor ADC input
12	AVDD_DA C	Power	1.5V Power supply for ADC and DAC
13	MS[0]	I (digital)	MS[2:0] (Mode Select)
14	MS[1]	I (digital)	000: Normal mode
15	MS[2]	I (digital)	001: ISP mode
16	MSV	l (digital)	Mode Select of Voltage 0 – 1.5V 1 – 1.8V
17	RESETB	I (digital)	Reset (Active Low)
18	DVREG3V	Power	3.0V Power supply for Internal Voltage Regulator

Table	1.	Pinout	overview
-------	----	--------	----------

		1					
	DVDD	Power	Output of Digital Internal Voltage Regulator (1.5V) /				
19		(In/Out)	1.5V Power supply for Digital Core(input mode @ No				
		(REG)				
20	P1[7]	O (digital)	Port P1.7 GPO / P0AND / TRSW				
21	P1[6]	B (digital)	Port P1.6 / TRSWB				
22	P1[4]	B (digital)	Port P1.4 / QUADZB / Sleep Timer OSC Buffer Input				
23	D1[2]	P (digital)	Port P1.3 / QUADZA / Sleep Timer OSC Buffer Output				
23	P1[3]	B (digital)	/ RTCLKOUT				
24	P1[1]	B (digital)	Port P1.1 / TXD1				
25	DVDD3V	Power	3.0V Power supply for Digital IO				
26	P1[0]	B (digital)	Port P1.0 / RXD1				
07	D0[7]		Port P3.7 / 12mA Drive capability / PWM3 / CTS1 /				
27	P3[7]	B (digital)	SPICSN				
	Dotol		Port P3.6 / 12mA Drive capability /PWM2 / RTS1 /				
28	P3[6]	B (digital)	SPICLK				
29	P3[5]	B (digital)	Port P3.5 / T1 / CTS0 / QUADYB / SPIDO				
30	P3[4]	B (digital)	Port P3.4 / T0 / RTS0 / QUADYA / SPIDI				
31	P3[3]	B (digital)	Port P3.3 / INT1 (active low)				
32	P3[2]	B (digital)	Port P3.2 / INT0 (active low)				
33	P3[1]	B (digital)	Port P3.1 / TXD0 / QUADXB				
34	DVDD3V	Power	3.0V Power supply for Digital IO				
35	P3[0]	B (digital)	Port P3.0 / RXD0 / QUADXA				
36	P0[7]	B (digital)	Port P0.7 / I2STX_MCLK				
37	P0[6]	B (digital)	Port P0.6 / I2STX_BCLK				
38	P0[5]	B (digital)	Port P0.5 / I2STX_LRCLK				
39	P0[4]	B (digital)	Port P0.4 / I2STX_DO				
40	P0[3]	B (digital)	Port P0.3 / I2SRX_MCLK				
41	P0[2]	B (digital)	Port P0.2 / I2SRX_BCLK				
42	P0[1]	B (digital)	Port P0.1 / I2SRX_LRCK				
43	P0[0]	B (digital)	Port P0.0 / I2SRX_DI				
			Output of Digital Internal Voltage Regulator (1.5V) /				
44	DVDD	Power	1.5V Power supply for Digital Core(input mode @ No				
		(In/Out)	REG)				
45	XOSCO	Analog	Crystal Oscillator Output				
L							

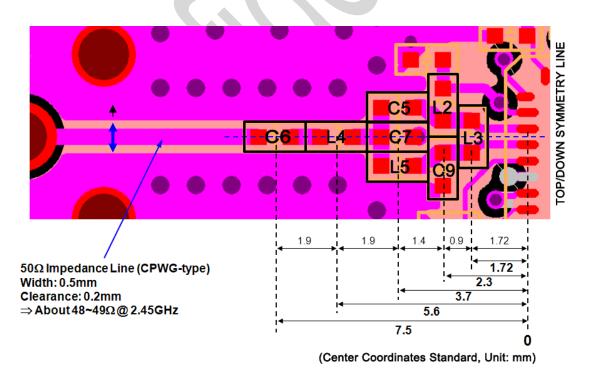

MG2455-F48-D-001

46	XOSCI	Analog	Crystal Oscillator Input				
47	AVDD_XO SC	Power	1.5V Power supply for Crystal oscillator and CKPLL				
48	AVDD_CP	Power	1.5V Power supply for Charge Pump and PFD				

6. APPLICATION CIRCUIT

Application circuit of MG2455 is shown in [Figure2]. Typical value and description of external components are shown in [Table2].

*** GND is bottom pad (down-bonding pad) in the above schematic

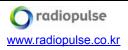

Figure 2. MG2455 Application Circuit

NO.	Part Name	Specification	Amount	Position						
1	Chip-Cap	13pF	2pc	C2,C1						
2	Chip-Cap	1nF	2pc	C10,C3						
3	Chip-Cap	1µF	1pc	C4						
4	Chip-Cap	0.75pF	2pc	C5,C9						
5	Chip-Cap	1pF	1pc	C6						
6	Chip-Cap	Chip-Cap 1.1pF 1p		C7						
7	Chip-Cap	10µF/P	1pc	C8						
8	Chip-Ind	100nH	1pc	L1						
9	Chip-Ind	5.6nH	2pc	L5,L2						
10	Chip-Ind	3.6nH	1pc	L3						
11	Chip-Ind	4.3nH	1pc	L4						
12	Chip-Res	150K	1pc	R1						
13	ZigBee Chip	MG2455-F48	1pc	U1						
14	X-TAL-SMD	16M:3225M/10ppm, CL=9pF	1pc	XTAL1						

Table 2. Overview of external components.

The following shows the PCB artwork pattern of the recommended RF matching circuit.

CAUTION: Please use ONLY Murata C,L.



RF Matching Procedure

- 1 The values of L2/C5/L5/C9 is adjusted to 2.4GHz band.
- 2 L4 and C6 organize narrow band-pass.
- 3 Adjust L3 and C7 value to maximize output level.
- ④ Adjust L4 and C6 to minimize 2^{nd} and 3^{rd} harmonic.

For best performance, a four layer PCB is highly recommended. As the picture above, the first layer(top layer) is used for signal routing and the empty area needs to be used as ground. It is not good for signal routing with middle layers. Second layer is used for connecting ground routing and third layer is used for connecting power-line. Finally, fourth layer is used for ground and signal routing. The middle of the bottom of MG2455 package should be connected to the ground of a board. The ground is located in the middle of the bottom of MG2455.

<u>CB Layer Structure</u> .		
	Copper Height: 1-oz 0.035mm↔	Component, Routing₀
T = 0.36mm +/ <u>5</u> %		
T = 0.40mm +/- 10%+		Ground Layer↓
T = 0.36mm +/5%	←	PWR / Ground↓
	←	PWR / Ground / Routing.

7. FUNCTIONAL DESCRIPTION

[Figure3] shows the block diagram of MG2455. MG2455 consists of 2.4GHz RF, Modem, MAC hardware engine, Voice block, Peripherals, Flash memory and Microcontroller(MCU) block.

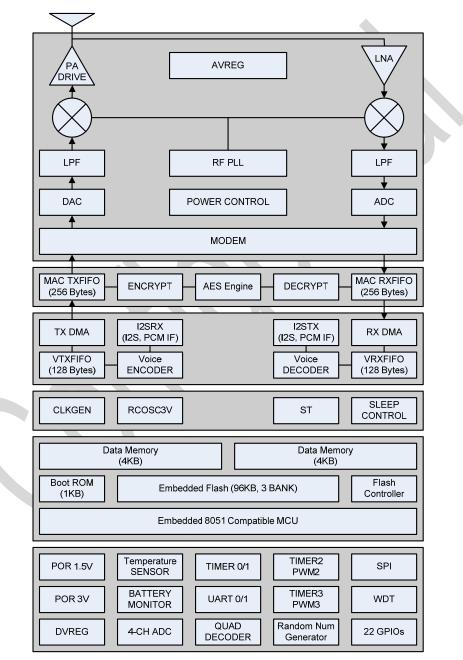


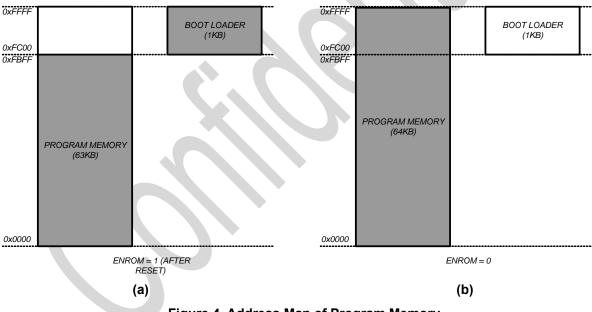
Figure 3. Functional Block Diagram of MG2455

In receive mode, the received RF signal is amplified by the LNA(Low Noise Amplifier) and then down-converted to quadrature signal. Finally, it becomes a baseband signal. After a baseband signal is filtered and amplified, it is converted to a digital value by ADC and then it is transferred to a modem. The data ,which is the result of signal processing such as dispreading, is transferred to MAC block. In transmit mode, the buffered data at MAC are transferred to a baseband modem. A baseband modem outputs a signal by DAC after signal processing such as spreading and pulse shaping. A baseband signal filtered by an analog low-pass filter is converted to RF signal by up-conversion mixer and it is amplified by PA and is provided to an antenna.

The MAC block provides IEEE802.15.4 compliant hardware and it is located between microprocessor and a baseband modem. MAC block includes FIFOs for transmitting/receiving packet, AES engine for security operation, CRC and related control circuit. In addition, it supports automatic CRC check and address decoding.

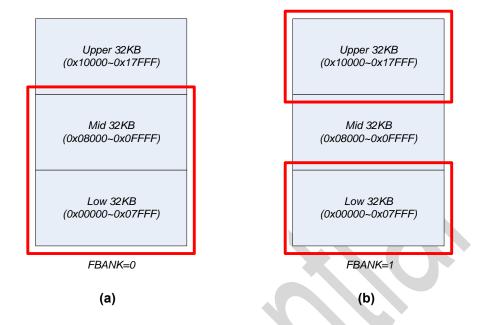
MG2455 integrates a high performance embedded microcontroller and the embedded MCU is compatible to intel i8051 microcontroller in an instruction level. This embedded microcontroller has 8-bit operation architecture enough to be used in controller applications. The embedded microcontroller has 4-stage pipeline architecture to improve the performance more than the previous compatible chip. Therefore, it can execute simple instructions during 1 cycle. The memory organization of the embedded microcontroller consists of a program memory and data memory. For a data memory, it has 2 memory area. For more detail explanation, refer to the data memory section.

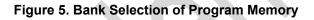
MG2455 includes 22 GPIO and various peripheral circuits to develop an application circuit easily. Also, it has the interrupt handler to control these peripherals. MG2455 uses 16MHz crystal oscillator for RF PLL and 8MHz clock generated from 16MHz in clock generator is used for microcontroller, MAC, and the clock of a baseband modem.


MG2455 supports a voice function as follows. The data generated by an external ADC is input to the voice block via I2S interface. After the data received via I2S is compressed at voice codec, it is stored in Voice TXFIFO. The data in Voice TXFIFO is transferred to MAC TXFIFO and it is transmitted via PHY. In contrast, the received data in MAC RXFIFO is transferred to voice RXFIFO via DMA operation. The data in voice RXFIFO is decompressed at the internal voice codec. The decompressed data is transferred to the external DAC via I2S interface.

7.1. MEMORY ORGANIZATION

7.1.1. PROGRAM MEMORY


The address space of program memory is 64KB(0x0000~0XFFFF). Basically, the lower 63KB of program memory is implemented by Non-volatile memory. The upper 1KB from 0XFC00 to 0XFFFF is implemented by both Non-volatile memory and ROM. As shown in [Figure4] below, there are two types of memory in the same address space. The address space, which is implemented by Non-volatile memory, is used as general program memory and the address space, which is implemented by ROM, is used for ISP(In-System Programming).


As shown in (a) of [Figure4] below, when Power is turned on, the upper 1KB of program memory is mapped to ROM. As shown in (b) of [Figure4], if this program area (1KB) is used as non-volatile program memory, ENROM should be set to '0'. See the SFR section for ENROM.

MG2455 includes non-volatile memory of 96KB. However, as described already, program memory area is 64KB. Therefore, if necessary, the upper 64KB of physical 96KB non-volatile memory is separated by two 32KB memory bank. And each bank is logically mapped to the program memory. When FBANK value is '0', lower 64KB of non-volatile memory is used as shown in (a) of [Figure5]. When FBANK value is '1', lower 32 KB and upper 32KB of non-volatile memory are used as shown in (b) of [Figure5]. See the SFR section for FBANK.

7.1.2. DATA MEMORY

MG2455 reserves 64 KB data memory address space. This address space can be accessed by MOVX command. [Figure6] shows the address map of this data memory.

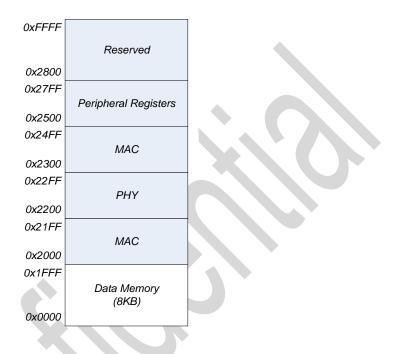


Figure 6. Address Map of Data Memory

The data memory used in an application program resides in the address range 0x0000-0x1FFF. The registers and memory used in MAC block reside in the address range 0x2000-0x21FF and 0x2300-0x24FF respectively. The registers to control PHY block or report the status of PHY block reside in the address range 0x2200-0x22FF.

As well, registers related to several peripheral circuits of embedded microprocessor reside in the address range of 0x2500-0x27FF.

7.1.3. GENERAL FUNCTION REGISTERS

[Figure7] describes the address map of GPRs. GPRs can be addressed either directly or indirectly. As shown in the lower address space of [Figure7],a bank consists of 8 registers. The address space above the bank area is the bit addressable area, which is used as a flag by software or by a bit operation. The address space above the bit addressable area includes registers used as a general purpose of a byte unit. For the detail information, refer to the below.

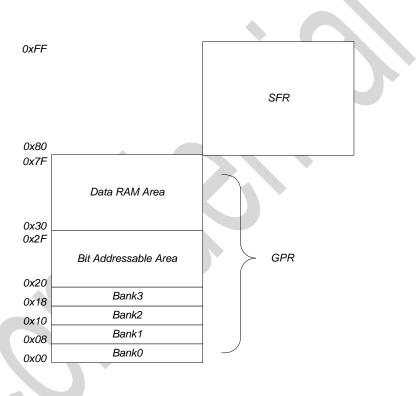


Figure 7. GPRs Address Map

Register Bank 0-3: It is located from 0x00 to 0x1F(32 bytes). One bank consists of each 8 registers out of 32 registers. Therefore, there are total 4 banks. Each bank should be selected by software as referring the RS field in PSW register. The bank(8 registers)selected by RS value can be accessed by a name(R0-R7) by software. After reset, the default value is set to bank0.

Bit Addressable Area: The address is assigned to each bit of 16 bytes(0x20~0x2F) and registers ,which is the multiple of 8, in SFR. Each bit can be accessed by the address which is

assigned to these bits. 128 bits(16 bytes, $0x20 \sim 0x2F$) can be accessed by direct addressing for each bit($0 \sim 127$) and by a byte unit as using the address from $0x20 \sim 0x2F$.

Data RAM Area: A user can use registers(0x30~0x7F) as a general purpose.

7.1.4. SPECIAL FUNCTION REGISTERS

Generally, a register is used to store the data. MCU needs the memory to control the embedded hardware or the memory to show the hardware status. SFRs(Special Function Registers) process these functions described above. SFR includes the status or control of I/O port, timer register, and stack pointer and so on. [Table3] shows the address to all SFRs in MG2455. All SFRs are accessed by a byte unit. However, when SFR address is multiple of 8, it can be accessed by a bit unit.

Register	SFR	B7	B6	B5	B4	B3	B2	B1	В0	Initial
Name	Address									Value
EIP	0xF8		VCEI	SPII	RTCIP	T3IP	AESIP	T2IP	RFIP	0x00
			Р	Р						
В	0xF0									0x00
EIE	0xE8		VCEI	SPII	RTCIE	T3IE	AESIE	T2IE	RFIE	0x00
			Е	Е						
ACC	0xE0									0x00
EICON	0xD8					RTCIF				0x00
WDT	0xD2				WDTW	WDTE	WDTCLR	WDT	PRE	0x0B
					Е	Ν				
PSW	0xD0	CY	AC	F0	R	S	OV	F1	Р	0x00
WCON	0xC0						ISPMOD	ENROM		0x00
							E			
P3REN	0xBC									0xFF
P1REN	0xBA									0xFF
P0REN	0xB9									0xFF
IP	0xB8		PS1		PS0	PT1	PX1	PT0	PX0	0x00
P30EN	0xB4									0x00


Table 3. SFR (Special Function Register) Map

MG2455-F48-D-001

MG2455-F48 Datasheet

P10EN	0xB2									0x00
P00EN	0xB1									0x00
P3	0xB0									0x3F
TL3	0xAD									0x00
TL2	0xAC									0x00
TH3	0xAB									0x00
TH2	0xAA									0x00
T23CO	0xA9					TR3	M3	TR2	M2	0x00
N										
IE	0xA8	EA	ES1		ES0	ET1	EX1	ET0	EX0	0x00
AUXR1	0xA2								DPS	0x00
FBANK	0xA1	RAM	RAM0					FBA	NK	0x00
		1								
EXIF	0x91	T3IF	AESIF	T2IF	RFIF					0x00
P1	0x90									0xFF
TH1	0x8D									0x00
TH0	0x8C									0x00
TL1	0x8B									0x00
TL0	0x8A									0x00
TMOD	0x89	GATE	CT1		M1	GATE0	CT0	M	C	0x00
		1								
TCON	0x88	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0x00
PCON	0x87							PD	IDLE	0x00
POSEL	0x85							ExNoEdge	P0AndS	0x00
									EL	
POMSK	0x84									0xFF
DPH	0x83									0x00
DPL	0x82									0x00
SP	0x81									0x07
P0	0x80									0xFF

The following section describes each SFR related to microprocessor.

Note 1: This table shows register bit of	conventions.
Symbol	Access Mode
RW	Read/write
RO	Read Only

WCON (WRITE CONTROL REGISTER, 0xC0)

This register can control the upper 1KB of program memory.

Bit	Name	Descriptions	R/W	Reset Value
7:3		Reserved		0
2	ISPMODE	ISP Mode Indication. When MS[1:0] , an external pin, is '3', this field is set to 1 by hardware. It informs whether ISPMODE or not.	RO	-
1	ENROM	When this field is '1', the upper 1KB (0xFC00~0xFFFF) is mapped to ROM. When this field is '0', the upper 1KB (0xFC00~0xFFFF) is mapped to non-volatile memory.	R/W	1
0		Reserved		0

FBANK (PROGRAM MEMORY BANK SELECTION REGISTER, 0xA1)

Bit	Name	Descriptions	R/W	Reset
				Value
7:1		Reserved		0x00
0	FBANK	Program Memory Bank Select. 0: Bank0 (Default) 1: Bank1 2: Not Used 3: Not Used	R/W	0

ACCUMULATOR(0xE0)

This register is marked as A or ACC and it is related to all the operations.

Bit	Name	Descriptions	R/W	Reset Value
7:0	А	Accumulator	R/W	0x00

B REGISTER(0xF0)

This register is used as a special purpose when multiplication and division are processed. For other instructions, it can be used as a general-purpose register. After multiplication is processed, this register contains the MSB data and 'A register' contains LSB data for multiplication result. In division operation, this register stores the value before division(dividend) and the remainder after division. At this time, before division, the divisor should be stored in 'A register' and result value(quotient) is stored in it after division.

Bit	Name	Descriptions	R/W	Reset Value
7:0	В	B register. Used in MUL/DIV instructions.	R/W	0x00

PROGRAM STATUS WORD (PSW,0xD0)

This register stores the status of the program. The explanation of each bit is as follows.

Bit Field	Name	Descriptions	RW	Reset Value
7	CY	Carry flag	R/W	0
6	AC	Auxiliary carry flag	R/W	0
5	F0	Flag0. User-defined	R/W	0
4:3	RS	Register bank select. 0: Bank0 1: Bank1 2: Reserved 3: Reserved	R/W	0
2	OV	Overflow flag	R/W	0
1	F1	Flag1. User-defined	R/W	0
0	Р	Parity flag.	R/W	0

Set to 1 when the value in accumulator has odd number	
of '1' bits.	

STACK POINTER(0x81)

When PUSH and CALL command is executed, some data like the parameters by function call is stored in stack to inform the values. In embedded MCU, the data memory area which can be used as a general purpose(0x08~0x7F) is used as a stack area.

This register value is increased before the data is stored and the register value is decreased after the data is read when the data of stack is disappeared by POP and RET command. The default value is 0x07.

Bit Field	Name	Descriptions	RW	Reset Value
7:0	SP	Stack Pointer	R/W	0x07

DATA POINTER(DPH: 0x83,DPL: 0x82)

Data pointer consists of a high byte(DPH) and a low byte(DPL) to support 16-bit address. It can be accessed by 16-bit register or by two 8-bit registers respectively.

Bit Field	Name	Descriptions	RW	Reset Value
7:0	DPH	Data pointer, high byte	R/W	0x00

Bit Field	Name	Descriptions	RW	Reset Value
7:0	DPL	Data pointer, low byte	R/W	0x00

AUXR1 (AUXILIARY CONTROL REGISTER,0xA2)

This register is used to implement Dual DPTR function. Physically, DPTR consists of DPTR0 and DPTR1. However, DPTR0 and DPTR1 can be accessed depending on the DPS value of AUXR1 respectively. In other words, they cannot be accessed at the same time.

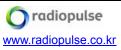
Bit Field	Name	Descriptions	RW	Reset Value
7:1		Reserved		0x00
0	DPS	Dual DPTR Select. This field is used to select either DPTR0 or DPTR1. When DSP is '0', DPTR0 is selected. When DSP is '1', DPTR1 is selected.	R/W	0

P3(0xB0)

This port register can be used by other functions except general purpose I/O.

		Descriptions		
Bit Field	Name	Descriptions	R/W	Reset
				Value
7	P3.7	This port register is used as general purpose I/O port(12mA Drive)	R/W	0
	/PWM3	When Timer3 is operated as a PWM mode, it outputs PWM wave (PWM3) of Timer3.		
ſ	/CTS1	When port register is used as UART1, it is used as a CTS signal (CTS1) of UART1.		
	/SPICSN	When used as a Master mode, SPI Slave Select signal is outputted. When used as a Slave mode, this port register receives SPI Slave Select signal. This signal activate in low.		
6	P3.6	This port register is used as general purpose I/O port(12mA Drive)	R/W	0
	/PWM2	When Timer2 is operated as a PWM mode, it outputs PWM wave (PWM2) of Timer2.		
	/RTS1	When port register is used as UART1, it is used as a RTS signal (RTS1) of UART1.		
	/SPICLK	When used as a Master mode, SPI clock is		

-				
		outputted. When used as a Slave mode, this port		
	D2 5	register receives SPI clock.		
5	P3.5	This port register is used as general purpose I/O	R/W	1
		port		
	/T1	When Timer1 is operated as a COUNTER mode,		
	/ 1 1	it is operated as a counter input signal(T1) of		
		Timer1.		
	/CTS0	When port register is used as UART0, it is used		
	/0100	as a CTS signal (CTS0) of UART0.		
	/SPIDO	In a Master mode or a Slave mode, this port		
		register is used for outputting SPI data.		
	/QUADYB	When port register is used as QUAD function, it is		
		used as the input signal of YB value.		
4	P3.4	This port register is used as general purpose I/O	R/W	1
		port		
	/T0	When Timer0 is operated as a COUNTER mode,		
		it is operated as a counter input signal(T0) of		
		Timer0.		
	/RTS0	When port register is used as UART0, it is used		
		as a RTS signal (RTS0) of UART0.		
	/SPIDI	In a Master mode or a Slave mode, this port		
		register is used for receiving SPI data.		
	/QUADYA	When port register is used as QUAD function, it is		
		used as the input signal of YA value.		
3	P3.3	This port register is used as general purpose I/O	R/W	1
		port.		
	/INT1	When port register is used as a input signal, it		
		can receive an external interrupt(INT1).		
2	P3.2	This port register is used as general purpose I/O	R/W	1
2		port.	17/00	I
	/INT0	When port register is used as a input signal, it		
		can receive an external interrupt(INT0).		
1	P3.1	This port register is used as general purpose I/O	R/W	1
		port.		
	/TXD0	When port register is used as UART0, it is used		
		as a UART0 data output(TXD0).		
	/QUADXB	When port register is used as QUAD function, it is		

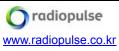


		used as the input signal of XB value.		
0	P3.0	This port register is used as general purpose I/O port.	R/W	1
	/RXD0	When port register is used as UART0, it is used as a UART0 data input(RXD0).		
	/QUADXA	When port register is used as QUAD function, it is used as the input signal of XA value.		

P1(0x90)

This port register can be used by other functions except general purpose I/O.

Bit Field	Name	Descriptions	R/W	Reset
DitTicid	Name		1.7.4.4	
				Value
7	P1.7	This port register is used as general purpose I/O	R/W	1
		port.		
	/P0AND	When P0AndSel value in P0SEL register is set to		
	I OAND	'1',P1.7 outputs the result of bit-wise AND		
		operation of (P0 OR P0MSK).		
	/TRSW	It can be used as TRSW(RF TX/RX Indication		
		signal) signal by setting PHY register.		
6	P1.6	This port register is used as general purpose I/O	R/W	1
		port.		
	/TRSWB	It can be used as TRSWB(TRSW Inversion		
	DIC	signal) signal by setting PHY register.		
5	P1.5	This port register is used as general purpose I/O port.	R/W	1
4	P1.4	This port register is used as general purpose I/O	R/W	1
		port.		
	/QUADZB	When this port register is used as QUAD function,		
	, QO, IDEB	it is used as the input signal of ZB value.		
	/RTXTALI	This port register is used as connecting to the		
		external crystal(32.768KHz) ,which is used in		
	- / -	Sleep Timer, by setting PHY register.		
3	P1.3	This port register is used as general purpose I/O	R/W	1
		port.		
	/QUADZA	When this port register is used as QUAD function,		
		it is used as the input signal of ZA value.		



	/RTXTALO	This port register is used as connecting to the external crystal(32.768KHz) ,which is used in Sleep Timer, by setting PHY register.		
	/RTCLKO	This port register is used to output the internal RCOSC by setting PHY register.		
2	P1.2	This port register is used as general purpose I/O port.	R/W	1
1	P1.1	This port register is used as general purpose I/O port.	R/W	1
	/TXD1	When this port register is used as UART1,it is used as UART1 data output(TXD1).		
0	P1.0	This port register is used as general purpose I/O port.	R/W	1
	/RXD1	When this port register is used as UART1,it is used as UART1 data input(RXD1).	5	

P0(0x80)

This port register can be used by other functions except general purpose I/O.

Bit Field	Name	Descriptions	R/W	Reset
				Value
				value
7	P0.7	This port register is used as general purpose	R/W	1
		I/O port.		
	/I2STXMCLK	When this port register is used as I2S, it is		
		operated as TX Master clock of I2S interface.		
6	P0.6	This port register is used as general purpose	R/W	1
U U		I/O port.	1.7.4.4	•
	/I2STXBCLK	When this port register is used as I2S,it is		
	ALC INDUEN	operated as TX Bit clock of I2S interface.		
	P0.5	This port register is used as general purpose		
5	F0.5	I/O port.	R/W	1
		When this next register is used as 100 it is		
	/I2STXLRCK	When this port register is used as I2S, it is		
		operated as TX LR clock of I2S interface.		
4	P0.4	This port register is used as general purpose	R/W	1
		I/O port.		
	/I2STXDO	When this port register is used as I2S, it is		
		operated as TX data output of I2S interface.		
3	P0.3	This port register is used as general purpose	R/W	1
5		1 0 ··· · · · · · · · · · · · · · · · ·	1.7.4.4	

	/I2SRXMCLK	I/O port. When this port register is used as I2S,it is operated as RX Master clock of I2S interface.		
2	P0.2	This port register is used as general purpose I/O port.	R/W	1
	/I2SRXBCLK	When this port register is used as I2S, it is operated as RX Bit clock of I2S interface.		
1	P0.1	This port register is used as general purpose I/O port.	R/W	1
	/I2SRXLRCK	When this port register is used as I2S,it is operated as RX LR clock of I2S interface.		
0	P0.0	This port register is used as general purpose I/O port.	R/W	1
	/I2SRXDI	When this port register is used as I2S, it is operated as RX data input of I2S interface.		

P0OEN/P1OEN/P3OEN(0xB1, 0xB2, 0xB4)

POOEN, P1OEN and P3OEN enable the output of port0,1 and 3. When each bit is cleared to '0', the output of the corresponding port is enabled. For example, when 4th bit of P1OEN is set to low, the output of port1.3 is enabled.

Bit Field	Name	Descriptions	R/W	Reset
				Value
7:0	P3OEN	It controls the TX buffer function for each pin in Port3.When each bit field is set to '0',the TX buffer of the corresponding pin outputs the value.	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved		0
6:0	P10EN	It controls the TX buffer function for each pin in Port1.When each bit field is set to '0',the TX buffer of the corresponding pin outputs the value.	R/W	0x00

P1.7 only acts as output.

Bit Field	Name	Descriptions	R/W	Reset
				Value
7:0	P0OEN	It controls the TX buffer function for each pin in Port0.When each bit field is set to '0',the TX buffer of the corresponding pin outputs the value.	R/W	0x00

POREN/P1REN/P3REN(0xB9, 0xBA, 0xBC)

POREN, P1REN, P3REN enable Pull-up of port 0, 1 and 3. When each bit area is cleared to '0', the Pull-up of the corresponding port is enabled.

Bit Field	Name	Descriptions	R/W	Reset
				Value
7:0	P3REN	It controls the Pull-up function for each pin in Port3.When each bit field is set to '0',the Pull- up function of the corresponding pin is operated.	R/W	0xFF

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved		1
6:0	P1REN	It controls the Pull-up function for each pin in Port1.When each bit field is set to '0',the Pull- up function of the corresponding pin is operated. *P1.7 doesn't have control field because it is operated as the output.	R/W	0x7F

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	POREN	It controls the Pull-up function for each pin in Port0. When each bit field is set to '0',the Pull- up function of the corresponding pin is operated.	R/W	0xFF

Page:33/173

P0MSK (P0 INPUT MASK REGISTER,0x84)

Bit Field	Name	Descriptions	R/W	Reset
				Value
7:0	P0MSK	This register is used for masking the input of	R/W	0xFF
		P0 pin(Refer to P0AndSel in P0SEL register).		

P0SEL (P0 INPUT SELECTION REGISTER,0x85)

Bit Field	Name	Descriptions	R/W	Reset Value
7:2		Reserved		0
1	ExNoEdge	This field controls to wake up MCU by an external interrupt in power-down mode. When this field is '0', MCU wakes up when INT0 or INT1 signal is going to high(This is normal case in MCU.) When this field is '1', MCU is woken up by wakeup signal of Sleep Timer. Remote control function can be implemented by the interrupt service routine of MCU when WAKEUP signal occurs by adjusting RTDLY value in Sleep Timer while INT0 or INT1 is in low.	R/W	0
0	P0AndSel	When this field is set to '1', P0 and P0MSK are ORed per bit. The bits of the result value are to be ANed and then output to P1.7. This function is used to implement remote control function.	R/W	0
	S			

7.2. RESET

MG2455 should be reset to be operated. There are three kinds of reset source. The first one is to use an external reset pin(RESET#). When applying a low signal to this pin more than 1ms, MG2455 is to be reset. Second, MG2455 is to be reset by an internal POR when it is powered up as using the internal Power-On-Reset(POR) block. Third, as a reset by watchdog timer, a reset signal is generated when the internal counter of watchdog timer reaches the value which is already set.

Parameter	MIN	ТҮР	МАХ	UNIT
POR Specifications				
1.5V POR Release		1.18		V
1.5V POR Hysteresis		0.11		V

7.3. CLOCK SOURCE

MG2455 can use16MHz or 19.2MHz crystal as system clock source. External 32.768KHz crystal or internal clock generated from internal RCOSC is used as a Sleep Timer source.

7.4. INTERRUPT SCHEME

Embedded MCU supports the program interrupt function as well as other microprocessor. When the interrupt occurs, the interrupt service routine at the corresponding vector address of that interrupt is executed. When the interrupt service routine process is completed, a program is executed again from the point of time which interrupt occurs. Interrupt can occur by the internal operation of the embedded(e.g. the overflow of timer count) microprocessor or an external signal.

MG2455 has 13 interrupt sources. The following [Table4] describes the detail information for the interrupt sources. Interrupt address indicates the address which interrupt service routine is located. Interrupt flag is the bit which informs that corresponding interrupt occurs. Interrupt enable is the bit to decide whether each interrupt is enabled or not. Interrupt priority is the bit to

decide the priority of the corresponding interrupt. Interrupt number means interrupt priority fixed

by hardware. That is, when interrupts ,which have same priority value, occurs simultaneously, the lower level interrupt is processed first of all.

· · · · · · · · · · · · · · · · · · ·					
Interrupt Number	Interrupt Type	Interrupt Address	Interrupt Flag	Interrupt Enable	Interrupt Priority
0	External Interrupt0	0003H	TCON.IE0	IE.EX0	IP.PX0
1	Timer0 Interrupt	000BH	TCON.TF0	IE.ET0	IP.PT0
2	External Interrupt1	0013H	TCON.IE1	IE.EX1	IP.PX1
3	Timer1 Interrupt	001BH	TCON.TF1	IE.ET1	IP.PT1
4	UART0 Interrupt (TX) UART0 Interrupt (RX)	0023H	Refer to Note2	IE.ES0	IP.PS0
7	UART1Interrupt (TX) UART1 Interrupt (RX)	003BH	Refer to Note2	IE.ES1	IP.PS1
8	PHY Interrupt	0043H	EXIF.PHYIF	EIE.RFIE	EIP.RFIP
9	Timer2 Interrupt	004BH	EXIF.T2IF	EIE.T2IE	EIP.T2IP
10	AES Interrupt	0053H	EXIF.AESIF	EIE.AESIE	EIP.AESIP
11	Timer3 Interrupt	005BH	EXIF.T3IF	EIE.T3IE	EIP.T3IP
12	Sleep Timer Interrupt	0063H	EICON.RTCIF	EIE.RTCIE	EIP.RTCIP
13	SPI Interrupt	0068H	Refer to Note3	EIE.SPIIE	EIP.SPIIP
14	Voice Interrupt	0073H	Refer to Note4	EIE.VCEIE	EIP.VCEIP

Table 4.	Interript Description

Note 2: In case of UART Interrupt, bit[0] of IIR register(0x2502,0x2512) in UART block is used as a flag. As well, Tx,Rx,Timeout, Line Status and Modern Status interrupt can be distinguished by bit[3:1] value. For more detailed information, refer to the UART0/1 part.

Note 3: In case of SPI interrupt, there is another interrupt enable bit in SPI register besides EIE.SPIIE. In order to enable SPI interrupt, both SPIE in SPCR(0x2540) register and EIE.SPIIE should be set to '1'. And, SPIF in SPSR(0x2541) register acts as an interrupt flag.

Note 4: In case of Voice interrupt, there are interrupt enable register and interrupt flag register in voice block. interrupt enable register are VTFINTENA(0x2770), VRFINTENA(0x2771) and VDMINTENA(0x2772). interrupt flag register are VTFINTVAL(0x2776), VRFINTVAL(0x2777), and VDMINTVAL(0x2778). There are 24 interrupt sources. When the interrupt enable signal and interrupt flag signal are set to '1,' voice interrupt is enabled.

IE (INTERRUPT ENABLE REGISTER,0xA8)

The EA bit in IE register is the global interrupt enable signal for all interrupts. In addition, each interrupt is masked as each interrupt enable bit. Therefore, in order to use an interrupt, EA and interrupt enable bit of the interrupt should be set to '1'. When a bit corresponding to each interrupt is '0', each interrupt is disabled. When a bit corresponding to each interrupt is '1', each interrupt is enabled.

Bit Field	Name	Descriptions	R/W	Reset Value
7	EA	Global interrupt enable0: No interrupt will be acknowledged.1: Each interrupt source is individually enabled or disabled by setting its corresponding enable bit.	R/W	0
6	ES1	UART1 interrupt enable 1: interrupt enabled. (EA bit should be set to '1')	R/W	0
5		Reserved		0
4	ES0	UART0 interrupt enable 1: interrupt enabled. (EA bit should be set to '1')	R/W	0
3	ET1	Timer1 interrupt enable 1: interrupt enabled. (EA bit should be set to '1')	R/W	0
2	EX1	External interrupt1 enable 1: interrupt enabled. (EA bit should be set to '1')	R/W	0
1	ET0	Timer0 interrupt enable 1: interrupt enabled. (EA bit should be set to '1')	R/W	0
0	EX0	External interrupt0 enable 1: interrupt enabled. (EA bit should be set to '1')	R/W	0

IP (INTERRUPT PRIORITY REGISTER,0xB8)

If a bit corresponding to each interrupt is '0', the corresponding interrupt has lower priority and if a bit is '1', the corresponding interrupt has higher priority.

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved		0
6	PS1	UART1 interrupt priority 1: UART1 interrupt has higher priority.	R/W	0
5		Reserved		0
4	PS0	UART 0 interrupt priority 1: UART0 interrupt has higher priority.	R/W	0
3	PT1	Timer1 interrupt priority 1: Timer1 interrupt has higher priority.	R/W	0
2	PX1	External interrupt1 interrupt priority 1: External interrupt1interrupt has higher priority.	R/W	0
1	PT0	Timer0 interrupt priority 1: Timer0 interrupt has higher priority.	R/W	0
0	PX0	External interrupt0 interrupt priority 1: External interrupt0 interrupt has higher priority.	R/W	0

EIE (EXTENDED INTERRUPT ENABLE REGISTER,0xE8)

If a bit is '0', corresponding interrupt is disabled and if a bit is '1', corresponding interrupt is enabled. Refer to the following table.

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	R/W	0
6	VCEIE	Voice Interrupt Enable. 0: Interrupt disabled 1: Interrupt enabled	R/W	0
5	SPIIE	SPI Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0
4	RTCIE	Sleep Timer Interrupt Enable	R/W	0

		0: Interrupt disabled 1: Interrupt enabled		
3	T3IE	Timer3 Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0
2	AESIE	AES Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0
1	T2IE	Timer2 Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0
0	RFIE	RF Interrupt Enable 0: Interrupt disabled 1: Interrupt enabled	R/W	0

EIP (EXTENDED INTERRUPT PRIORITY REGISTER,0xF8)

If a bit is '0', the corresponding interrupt has lower priority. If a bit is '1', the corresponding interrupt has higher priority.

	<u>.</u>			<u>. </u>
Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved		0
6	VCEIP	Voice Interrupt Priority 1: Voice interrupt has higher priority. 0: Voice interrupt has lower priority.	R/W	0
5	SPIIP	SPI Interrupt Priority 1:SPI interrupt has higher priority. 0:SPI interrupt has lower priority.	R/W	0
4	RTCIP	Sleep Timer Interrupt Priority 1: Sleep Timer interrupt has higher priority. 0: Sleep Timer interrupt has lower priority.	R/W	0
3	T3IP	Timer3 Interrupt Priority 1: Timer3 interrupt has higher priority. 0: Timer3 interrupt has lower priority.	R/W	0
2	AESIP	AES Interrupt Priority 1: AES interrupt has higher priority. 0: AES interrupt has lower priority.	R/W	0

1	T2IP	Timer2 Interrupt Priority 1: Timer2 interrupt has higher priority. 0: Timer2 interrupt has lower priority.	R/W	0
0	RFIP	 RF Interrupt Priority 1: RF interrupt has higher priority. 0: RF interrupt has lower priority. 	R/W	0

EXIF (EXTENDED INTERRUPT FLAG REGISTER,0x91)

This register stores the interrupt state corresponding to each bit. When the interrupt corresponding to a bit is triggered, the flag is set to '1'.

Bit Field	Name	Descriptions	R/W	Reset Value
7	T3IF	Timer3 Interrupt Flag. 1: Interrupt pending	R/W	0
6	AESIF	AES Interrupt Flag. 1: Interrupt pending	R/W	0
5	T2IF	Timer2 Interrupt Flag. 1: Interrupt pending	R/W	0
4	RFIF	RF Interrupt Flag. 1: Interrupt pending	R/W	0
3:0		Reserved		0

EICON (EXTENDED INTERRUPT CONTROL REGISTER,0xD8)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved		0
6:4		Reserved		0
3	RTCIF	Sleep Timer Interrupt Flag. 1: Interrupt pending	R/W	0
2:0		Reserved		0

7.5. POWER MANAGEMENT

There are three power-saving modes in MG2455. Each mode can be set by PDMODE[1:0] bits in PDCON(0x22F1) register and power-saving mode can be started by setting PDSTART bit to 1. Each mode has a different current consumption and different wake-up sources. Following table describes three modes in Power-saving mode.

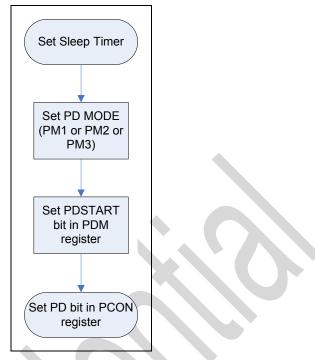
PDMOD	Description	wake-up source	Regulator for Digital block	Current
E[1:0]				consump
				tion
0	No power-down	-		-
1	PM1 mode	Hardware Reset,	ON	25μΑ
		Sleep Timer interrupt,		
		External interrupt		
2	PM2 mode	Hardware Reset,	OFF	<2µA
		Sleep Timer interrupt,	(After wake-up, register	
		External interrupt	configuration is required)	
3	PM3 mode	Hardware Reset,	OFF	<1µA
		External interrupt	(After wake-up, register	
			configuration is required)	

The following table describes the status of voltage regulator, oscillator, and sleep timer in normal mode(PM0) and Power-saving mode.

Power Mode	AVREG	DVREG	Main OSC	Sleep Timer
PM0	ON	ON	ON	ON
PM1	OFF	ON	OFF	ON
PM2	OFF	OFF	OFF	ON
PM3	OFF	OFF	OFF	OFF

When exit from Power-down by Sleep Timer interrupt, RTDLY(0x22F4) register specifies the delay time for oscillator stabilization. If the delay time is too short, the oscillator can be unstable and it can cause a problem to fetch a wrong instruction command in MCU.

In addition, there are two power-saving modes that can be only used in MCU. One is PD(Power-Down) mode and the other is IDLE mode. PD(Power-Down) mode of MCU is enabled by setting PD in PCON register to '1'. In PD(Power-Down) mode, all the clocks of MCU are stopped and current consumption is minimized. When interrupt, which is allowed for wake-up, occurs, it exits from PD mode. After exiting, first, the corresponding interrupt service routine is executed. And then, the next instruction after the instruction for setting PD to '1' is executed.


In IDLE mode, clocks of all the blocks in MCU except peripherals is stopped. The current consumption is 2.7MA. When the interrupt occurs except timer interrupt and external interrupt,IDLE bit is cleared and then it exits from IDLE mode. Required interrupt service routine is executed and the next instruction after the instruction for setting IDLE to '1' is executed.

Bit Field	Name	Descriptions	R/W	Reset Value
7:2		Reserved		0
1	PD	Power-down Mode. When this field is set to '1', all the clocks in MCU is stopped.	R/W	0
0	IDLE	Idle Mode. When this field is set to '1', all the clocks in MCU except peripherals is stopped. Only peripherals operates normally.	R/W	0

PCON (POWER CONTROL REGISTER,0x87)

When MG2455 goes into power-saving mode by setting PDSTART field of PDM register,PD bit of PCON register should be also set. To go into PD(Power-Down) mode, PDMODE field should be set as 1,2, or 3. After that, PD bit of PCON register should be set to 1 by the following instruction that set PDMODE. For more detail information,please refer to the [Figure 8].

Figure 8. Power Saving mode setting procedure

7.6. ON-CHIP PERIPHERALS

On-chips peripherals in MG2455 are as follows.

- TIMER 0/1
- TIMER 2/3,PWM 2/3
- Watch-dog timer
- Sleep Timer
- Internal RC Oscillator for Sleep Timer
- Two High-Speed UARTs with Two 16-byte FIFOs (up to 1Mbps)
- SPI Master/Slave Interface
- I2S/PCM Interface with two128-byte FIFOs
- μ-law / a-law / ADPCM Voice Codec
- Random Number Generator
- Quad Decoder
- Internal Voltage Regulator
- 4-channel 8-bit sensor ADC

- On-chip Power-on-Reset
- Temperature Sensor
- Battery Monitoring

7.6.1. TIMER 0/1

The Embedded MCU has two 16-bit timers which are compatible with Intel 8051 MCU(Timer0,Timer1). These timers have 2 mode; one is operated as a timer and the other is operated as a counter. When it is operated as a timer, there are 4 operating modes.

Each timer is 16-bit timer and consists of two 8-bit register. Therefore, the counter can be both 8-bit or 16-bit by the operating mode.

In counter mode, the input signal T0(P3.4) and T1(P3.5) are sampled per 12 system clock. If the sampled value is changed from '1' to '0', the internal counter is incremented. In this time, the duty cycle of T0 and T1 doesn't affect the increment. Timer0 and Timer1 are accessed by using 6 SFR.

The following table describes timer register and mode.

TCON (TIMER CONTROL REGISTER,0x88)

This register is used to control a timer function and monitor a timer status.

Bit Field	Name	Descriptions	R/W	Reset Value
7	TF1	Timer1 Overflow Flag. When this field is '1', Timer1 interrupt occurs. After Timer1 interrupt service routine is executed, this field value is cleared by hardware.	R/W	0
6	TR1	Timer1 Run Control. When this bit is set to '1', Timer1 is enabled.	R/W	0
5:4	TF0	Timer0 Interrupt Flag. 1: Interrupt is pending After Timer0 interrupt service routine is executed, this field is cleared by hardware.	R/W	0
4	TR0	Timer0 Run When this bit is set to '1', Timer0 is enabled.	R/W	0
3	IE1	External Interrupt1 Edge Flag.	R/W	0

		When this field is '1', External interrupt1 is pending. After the interrupt service routine is executed,this field is cleared by hardware.		
2	IT1	External Interrupt1 Type Control. This field specifies the type of External interrupt1. 1=Edge type. When the falling edge of INT1 is detected, the interrupt occurs. 0=Level type. When INT1 is low level, the interrupt occurs.	R/W	0
1	IE0	External Interrupt0 Edge Flag. When this field is '1', External interrupt0 is pending. After the interrupt service routine is executed, this field is cleared by hardware.	R/W	0
0	ITO	External Interrupt0 Type Control. This field specifies the type of External interrupt1. 1=Edge type. When the falling edge of INT1 is detected, the interrupt occurs. 0=Level type. When INT0 is low level, the interrupt occurs.	R/W	0

TMOD (TIMER MODE CONTROL REGISTER,0x89)

Bit Field	Name	Descriptions	R/W	Reset Value		
7	GATE1	Timer Gate Control When TR1 is set to '1' and GATE1 is '1', Timer1 is enabled while INT1 pin is in high. When GATE1 is set to '0' and TR1 is set to '1', Timer1 is enabled	R/W	0		
6	CT1	Timer1 Counter Mode Select When this field is set to '1', Timer1 is enabled as counter mode.	R/W	0		
5:4	M1	Timer1 mode select. 0: Mode0, 12-bit Timer 1: Mode1, 16-bit Timer 2: Mode2, 8-bit Timer with auto-load 3: Mode3, two 8-bit Timer	R/W	0		
3	GATE0	Timer0 Gate Control. When TR0 is set to '1' and GATE0 is '1', Timer0 is enabled while INT0 pin is in high. When GATE1 is set to '0' and TR1 is set to '1', Timer0 is enabled	R/W	0		
2	СТ0	When this field is set to '1', Timer0 is enabled as counter mode.	R/W	0		

1:0	M0	Timer0 mode select	R/W	0
		0: Mode0, 12-bit Timer		
		1: Mode1, 16-bit Timer		
		2: Mode2, 8-bit Timer with auto-load		
		3: Mode3, two 8-bit Timer		

TL0/TL1/TH0/TH1 (TIMER REGISTERS,0x8A, 0x8B, ,0x8C, 0x8D)

A pair of register ,which are (TH0,TL0) and (TH1,TL1), can be used as 16-bit timer register for Timer0 and Timer1 and it can be used as 8-bit register respectively.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH1	Timer1 High Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH0	Timer0 High Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL1	Timer1 Low Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL0	Timer0 Low Byte Data	R/W	0x00

In mode0, 12-bit register of timer0 consists of 7-bit of TH0 and lower 5-bit of TL0. Higher 1-bit of TH0 and higher 3-bit of TL0 are disregarded. When this 12-bit register is overflowed, set TF0 to '1'. The operation of timer1 is same as it of timer0.

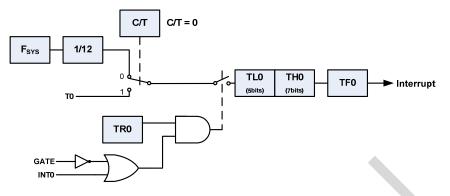
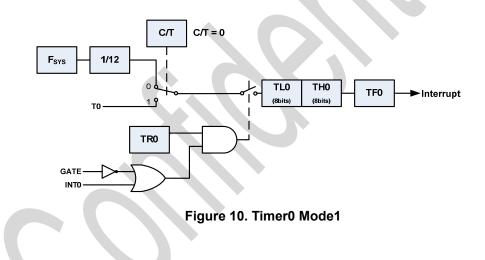



Figure 9. Timer0 Mode0

In Mode1, the operation is same as it of Mode0 except all timer registers are enabled as a 16-bit counter.

In mode2, TL0 of Timer0 is enabled as a 8-bit counter and TH0 reloads TL0 automatically. TF0 is set to '1' by overflowing of TL0. TH0 value retains the previous value regardless of the reloading. The operation of Timer1 is same as it of Timer0.

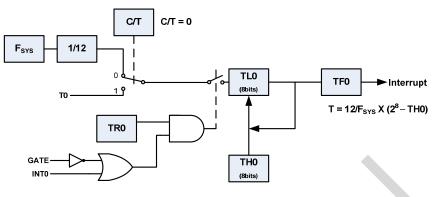


Figure 11. Timer0 Mode2

In Mode3, Timer0 uses TL0 and TH0 as a 8-bit timer respectively. In other words, it uses two counters. TL0 controls as the control signals of Timer0. TH0 is always used as a timer function and it controls as TR1 of Timer1. The overflow is stored in TF1. At this time, Timer1 is disabled and it retains the previous value.

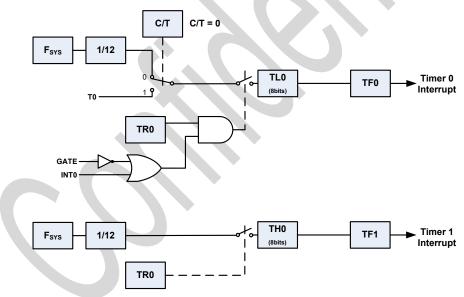


Figure 12. Timer0Mode3

7.6.2. TIMER 2/3, PWN 2/3

TIMER 2/3

Embedded MCU includes 16-bit timers(Timer2 and Timer3).

T23CON (TIMER2/3 CONTROL REGISTER, 0xA9)

This reg	jister is us	sed to control Timer2 and Time3.		
Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	R/W	0
3	TR3	Timer3 Run. When this field is set to '1', Timer3 is operated.	R/W	0
2	М3	Timer3 PWM Mode. When this field is set to '1', Timer3 acts as PWM mode.	R/W	0
1	TR2	Timer2 Run. When this field is set to '1', Timer2 is operated.	R/W	0
0	M2	Timer3 PWM Mode. When this field is set to '1', Timer3 acts as PWM mode.	R/W	0

TL2/TL3/TH2/TH3 (TIMER2/3 TIMER REGISTER, 0xAC, 0xAD, 0xAA, 0xAB)

Register (TH2, TL2) and (TH3, TL3) are 16-bit timer counter register for Timer2 and Timer3.

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL3	Timer3 Low Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TL2	Timer2 Low Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH3	Timer3 High Byte Data	R/W	0x00

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TH2	Timer2 High Byte Data	R/W	0x00

Timer2 acts as a general 16-bit timer. Time-out period is calculated by the following equation.

$$T_2 = \frac{8 \times (256 \times TH2 + TL2 + 1)}{fsystem}$$

If a user sets a time-out period too short, excessive interrupt occurs. Therefore, a system cannot be worked normally. It is recommended to set timer-out period of Timer2 over 100µs.

Timer3 acts as a general 16-bit timer. Time-out period of Timer3 is calculated by the following equation.

 $T_3 = \frac{3 \times (256 \times TH3 + TL3 + 1)}{fsystem}$

If a user sets a time-out period too short, excessive interrupt occurs. Therefore, a system cannot be worked normally. It is recommended not to set timer-out period of Timer3 too short.

PWM 2/3

TIMER 2/3 is used as PWM2 and PWM3 respectively based on the setting M2, M3 bit in T23CON register. P 3.6 outputs PWM2 signal and P3.7 outputs PWM3 signal

The following table describes the frequency and High Level Duty Rate in PWM mode.

Channel	Frequency (Hz)	High Level Duty Rate (%)
PWM2	$\frac{fsystem}{256 \times (TH2 + 1)}$	$\frac{TL2}{256} \times 100$
PWM3	$\frac{fsystem}{256 \times (TH3 + 1)}$	$\frac{TL3}{256} \times 100$

Note 5: The following below is not applied for the frequency of equation described above

-TH=0: Acts as 15.625 KHz.

-TH=1: Acts as 7.812 KHz.

7.6.3. WATCHDOG TIMER

Watchdog Timer (WDT) monitors whether MCU is normally operating or not. If a problem is caused, it immediately reset MCU.

In fact, when a system does not clear WDT counter value, WDT considers that a problem is caused. Therefore, it resets MCU automatically. WDT is used when a program is not completed normally because a software error is caused in any environment such as electrical noise, unstable power and static electricity.

When Power-up, the internal counter value of WDT is set to '0' and watchdog timer is operated. If overflow is caused in the internal counter, system reset is caused. At this moment, timeout period is about 0.5 second. A user may not use WDT by clearing WDTEN bit of WDTCON. When WDT operates, an application program must clears WDT periodically to prevent a system from being reset.

WDTCON	WATCHDOG TIM	ER CONTROL REGIS	STER, 0xD2)
--------	--------------	------------------	-------------

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved	R/W	0
4	WDTWE	WDT Write Enable. To set WDTEN to '1', this field should be set to '1'.	R/W	0

3	WDTEN	WDT Enable. To use WDT, this bit should be set to '1'.	R/W	0
2	WDTCLR	WDT Clear. Watchdog Timer resets a system when the internal counter value is reached to the defined value by WDTPRE value. This field does not allow system to be reset by clearing the internal counter. When this field is set to '1', this field value is cleared automatically.	R/W	0
1:0	WDTPRE	Watchdog Timer Prescaler. Sets the prescale value of WDT.	R/W	0

Reset interval of WDT is calculated by the following equation. For example, when WDTPRE value is '0' and system clock of MCU is 8MHz, reset interval of WDT is 65.536ms.

Watchdog Reset Interval = $\frac{256 \times 2^{(11+WDTPRE)}}{f_{system}}$

7.6.4. SLEEP TIMER

Sleep Timer can generate time interval such as 1 or 2second with 32.768KHz clock source. Sleep Timer(ST) is used to exit from power-saving mode.

The clock source desired can be generated from the external crystal or internal RC oscillator. ST is activated as setting RTEN bit to '1' and the interrupt interval can be programmed as setting RTCON[6:0], RTINT1 and RTINT0 register.

RTCON (SLEEP TIMER CONTROL REGISTER,0x22F5)

Bit Field	Name	Descriptions	R/W	Reset Value
7	RTCSEL	Sleep Timer Select. When this field is set to '1', internal RCOSC is used as a clock source. When this field is set to '0', external 32.768KHz crystal is used as a clock source. When this field is set to '0' and external crystal is not turned on, ST does not	R/W	1

		act.		
6:0	RTINT[22:16]	This field determines ST interrupt interval with RTINT0 and RTINT1	R/W	0x00

RTINT1 (SLEEP TIMER INTERRUPT INTERVAL 1, 0x22F6)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RTINT[15:8]	This field determines ST interrupt interval with RTINT0 and RTCON[6:0]	R/W	0x00

RTINT0 (SLEEP TIMER INTERRUPT INTERVAL 0, 0x22F7)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RTINT[7:0]	This field determines ST interrupt interval with RTINT1 and RTCON[6:0]	R/W	0x08

Sleep Timer Interrupt Interval

RTCON[6:0], RTINT1 and RTINT0 register represent RTINT[22:0](23-bit) and the timer interval is determined by this value. If ST clock source acts as 32.786KHz, one ST cycle is 1/32768 second and the timer interval is RTINT * (1/32768) second. Therefore, ST interrupt occurs per (RTINT * 30.5)µs and maximum is 256 second.

RTDLY (SLEEP TIMER DELAY REGISTER, 0x22F4)

This register is used when MCU exits from power-down state by using ST interrupt. RTDLY specifies the delay time for oscillator stabilization. When MCU exits from power-down mode, MCU executes the instruction after the delay time.

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	RTDLY	Delay Time = RTDLY \times 4 / 32.768KHz when ST clock source is 32.768KHz. The value of RTDLY should be greater than 2.	R/W	0x02

7.6.5. INTERNAL RC OSCILLATOR

Internal RC oscillator generates the internal clock and provides the clock to Sleep Timer block in embedded MCU. Internal RC oscillator can be controlled by 3th bit in PDCON(0x22F1) register. When this bit is set to '1', internal RC Oscillator is enabled. The default value is '1'.

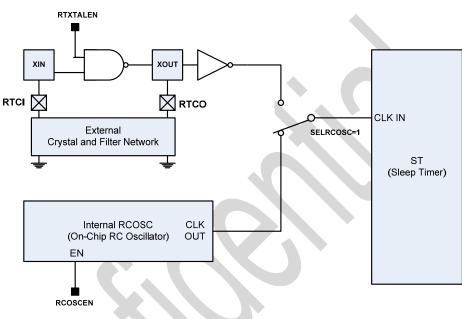


Figure 13. Internal RCOSC

7.6.6. UART0/1

Serial communication is categorized as synchronous mode and asynchronous mode in terms of data transmission method. Synchronous mode is to transmit the data based on the standard clock pulse. Asynchronous mode is to transmit the data bit by arranging the baud rate of data bit each other without standard clock. That is, when a transmitter transmits the data as arranged frequency, a receiver read the data according to the arranged method previously.

Embedded MCU has UART0 and UART1, which enable two-way communication. These devices support asynchronous mode. The following registers are used to control UART.

RBR (UART0 RECEIVE BUFFER REGISTER, 0x2500)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RBR	Read the received data	R/O	0x00

THR (UART0 TRANSMITTER HOLDING REGISTER, 0x2500)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	THR	This register stores the data to be transmitted. The address is same as RBR register. By accessing this address, received data(RBR) can be read and the data to be transmitted can be stored.	W/O	0x00

DLL (UART0 DIVISOR LSB REGISTER, 0x2500)

-				
Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLL	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists 16-bit register with DLM register and it is a lower 8 bit of 16-bit. This 16-bit register is used to divide clock.	R/W	0x00

Note 6:: After the data is written to DLM register, it should be written in this register. When the data is

written to DLL register, the clock divisor begins. Baud rate is calculated by the following equation.

Baud rate = clock_speed / (7 × divisor_latch_value)

IER (UART0 INTERRUPT ENABLE REGISTER, 0x2501)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved		0
3	EDSSI	Enable MODEM Status Interrupt. When this field is set to '1', Modem status interrupt is enabled.	R/W	0

2	ELSI	Enable Receiver Line Status Interrupt.	R/W	0
1	ETBEI	Enable Transmitter Holding Register Empty Interrupt	R/W	0
0	ERBEI	Enable Received Data Available Interrupt	R/W	0

DLM (UART0 DIVISOR LATCH MSB REGISTER, 0x2501)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLM	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists 16-bit register with DLL register and it is a higher 8 bit of 16-bit. This 16-bit register is used to divide clock.	R/W	0x00

IIR (UART0 INTERRUPT IDENTIFICATION REGISTER, 0x2502)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	R/O	0
3:1	INTID	Interrupt Identification. Refer to the [Table5].	R/O	0
0	PENDING	Shows whether the interrupt is pending or not. When this field is '0', the interrupt is pending.	R/0	1

Note 7: IIR register uses the same address as FCR register below. IIR register is read only and FCR register is write only.

Table 5.UART0 Interrupt Lists

INTID	Priority	Interrupt Type	Interrupt Source	Interrupt Reset Control
011	1 st	Receiver Line Status	Parity, Overrun or Framing errors or Break Interrupt	Reading the LSR (Line Status Register).
010	2 nd	Receiver Data available	FIFO trigger level reached	FIFO drops below trigger level
110	2 nd	Timeout Indication	There is at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 character times.	Reading from the FIFO (Receiver Buffer Register)
001	3 rd	Transmitter	Transmitter Holding Register	Writing to the

MG2455-F48-D-001

		Holding Register Empty	Empty	Transmitter Holding Register or reading IIR
000	4th	Modem Status	CTS, DSR, RI or DCD	Reading the Modem status register

FCR (UART0 FIFO CONTROL REGISTER, 0x2502)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	URXFTRIG	Adjust the trigger level of Receiver FIFO. Interrupt occurs when FIFO receives the data byte based on this field value below. For example, when URXFTRIG field is set to '3', interrupt does not occurs until FIFO receives 14 byte. When FIFO receives 14 byte, interrupt occurs. 0: 1byte 1: 4 byte	W/O	3
		2: 8 byte 3: 14 byte		
5:3		Reserved	W/O	0
2	UTXFRST	When this field is set to '1', Transmitter FIFO is cleared and the circuits related to it are reset.	W/O	0
1	URXFRST	When this field is set to '1', Receiver FIFO is cleared and the circuits related to it are reset.	W/O	0
0		Reserved	W/O	0

LCR (UART0 LINE CONTROL REGISTER, 0x2503)

Bit Field	Name	Descriptions	R/W	Reset Value
7	DLAB	Divisor Latch Access Enable. When this field is set to '1', Divisor register (DLM, DLL) can be accessed. When this field is set to '0', general register can be accessed.	R/W	0
6	SB	Set Break. When this field is set to '1', serial output is to be '0' by force(break state)	R/W	0
5	SP	Stick Parity. When PEN and EPS is '1' while this field is	R/W	0

			•	
		set to '1', parity ,which is generated as '0', is transmitted . In reception mode, it checks whether parity value is '0' or not.		
		When PEN is '1' and EPS is '0' while this field is set to '1', parity ,which is generated as '1', is transmitted . In reception mode, it checks whether parity value is '1' or not.		
4	EPS	Even Parity Enable. When this field is set to '1',parity value is determined to transfer '1' which is in even number. When this field is set to '0',parity value is determined to transfer '1' which is in odd number.	R/W	0
3	PEN	Parity Enable. When this field is set to '1', parity is calculated for the byte to be transmitted and transferred with it. In reception mode, checks parity. When this field is '0', parity is not generated.	R/W	0
2	STB	Number of Stop Bits. When this field is set to '1', 2 stop bit is used. When transmitting a word (character) of 5 bit length, 1.5 stop bit is used. When this field is '0', 1 stop bit is used.	R/W	0
1:0	WLS	Word Length Select. 0: 5bit Word 1: 6bit Word 2: 7bit Word 3: 8bit Word	R/W	3

There are more registers such as Modem Control Register, Line Status Register, Modem Status Register and Port Enable Register in a UART0 block. This document doesn't include these registers because they are not used commonly. For the more detail information, please contact to RadioPulse Inc.

The following registers are to control UART1.

RBR (UART1 RECEIVE BUFFER REGISTER, 0x2510)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RBR	Read the received data	R/O	0x00

THR (UART1 TRANSMITTER HOLDING REGISTER, 0x2510)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	THR	This register stores the data to be transmitted. The address is same as RBR register. By accessing this address, received data(RBR) can be read and the data to be transmitted can be stored.		0x00

DLL (UART1 DIVISOR LSB REGISTER, 0x2510)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLL	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists 16-bit register with DLM register and it is a lower 8 bit of 16-bit. This 16-bit register is used to divide clock.	R/W	0x00

Note 8: After the data is written to DLM register, it should be written in this register. When the data is

written to DLL register, the clock divisor begins. Baud rate is calculated by the following equation.

Baud rate = clock_speed / (7 × divisor_latch_value)

IER (UART1 INTERRUPT ENABLE REGISTER, 0x2511)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved		0
3	EDSSI	Enable MODEM Status Interrupt. When this field is set to '1', Modem status interrupt is enabled.	R/W	0
2	ELSI	Enable Receiver Line Status Interrupt.	R/W	0
1	ETBEI	Enable Transmitter Holding Register Empty Interrupt	R/W	0
0	ERBEI	Enable Received Data Available Interrupt	R/W	0

DLM (UART1 DIVISOR LATCH MSB REGISTER, 0x2511)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	DLM	This register can be accessed only when DLAB bit in LCR register is set to '1'. This register consists 16-bit register with DLL register and it is a higher 8 bit of 16-bit. This 16-bit register is used to divide clock.	R/W	0x00

IIR (UART1 INTERRUPT IDENTIFICATION REGISTER, 0x2512)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved	R/O	0
3:1	INTID	Interrupt Identification. Refer to the [Table6].	R/O	0
0	PENDING	Shows whether the interrupt is pending or not. When this field is '0', the interrupt is pending.	R/O	1

Note 9: IIR register uses the same address as FCR register below. IIR register is read only and FCR register is write only.

INTID	Priority	Interrupt Type	Interrupt Source	Interrupt Reset			
				Control			
011	1 st	Receiver Line	Parity, Overrun or Framing	Reading the LSR			
		Status	errors or Break Interrupt	(Line Status Register).			
010	2 nd	Receiver Data	FIFO trigger level reached	FIFO drops below			
		available		trigger level			
110	2 nd	Timeout	There is at least 1 character	Reading from the			
		Indication	in the FIFO but no character	FIFO (Receiver Buffer			
			has been input to the FIFO	Register)			
			or read from it for the last 4				
			character times.				
001	3 rd	Transmitter	Transmitter Holding Register	Writing to the			
		Holding	Empty	Transmitter Holding			
		Register		Register or reading			
		Empty		lir			
000	4th	Modem Status	CTS, DSR, RI or DCD	Reading the Modem			
				status register			

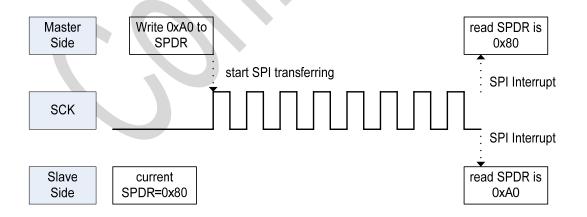
Table 6.UART1 Interrupt Lists

FCR (UART1 FIFO CONTROL REGISTER, 0x2512)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	Adjust the trigger level of Receiver FIFO. Interrupt occurs when FIFO receives the data byte based on this field value below. For example, when URXFTRIG field is set to '3', interrupt does not occurs until FIFO receives 14 byte. When FIFO receives 14 byte, interrupt occurs. 0: 1byte 1: 4 byte 2: 8 byte		W/O	3
		3: 14 byte		
5:3		Reserved	W/O	0
2	UTXFRST	When this field is set to '1', Transmitter FIFO is cleared and the circuits related to it are reset.	W/O	0
1	URXFRST	When this field is set to '1', Receiver FIFO is cleared and the circuits related to it are reset.	W/O	0
0		Reserved	W/O	0

LCR (UART1 LINE CONTROL REGISTER, 0x2513)

Bit Field	Name	Descriptions	R/W	Reset Value
7	DLAB	Divisor Latch Access Enable. When this field is set to '1', Divisor register (DLM, DLL) can be accessed. When this field is set to '0', general register can be accessed.	R/W	0
6	SB	Set Break. When this field is set to '1', serial output is to be '0' by force(break state)	R/W	0
5	SP	Stick Parity. When PEN and EPS is '1' while this field is set to '1', parity ,which is generated as '0', is transmitted . In reception mode, it checks whether parity value is '0' or not. When PEN is '1' and EPS is '0' while this field is set to '1', parity ,which is generated as '1', is transmitted . In reception mode, it checks whether parity value is '1' or not.	R/W	0
4	EPS	Even Parity Enable. When this field is set to '1',parity value is determined to transfer '1' which is in even number. When this field is set to '0',parity value is determined to transfer '1' which is in odd number.	R/W	0
3	PEN	Parity Enable. When this field is set to '1', parity is calculated for the byte to be transmitted and transferred with it. In reception mode, checks parity. When this field is '0', parity is not generated.	R/W	0
2	STB	Number of Stop Bits. When this field is set to '1', 2 stop bit is used. When transmitting a word (character) of 5 bit length, 1.5 stop bit is used. When this field is '0', 1 stop bit is used.	R/W	0
1:0	WLS	Word Length Select. 0: 5bit Word 1: 6bit Word 2: 7bit Word 3: 8bit Word	R/W	3


There are more registers such as Modem Control Register, Line Status Register, Modem Status Register and Port Enable Register in a UART1 block. This document doesn't include these registers because they are not used commonly. For the more detail information, please contact to RadioPulse Inc.

7.6.7. SPI MASTER/SLAVE

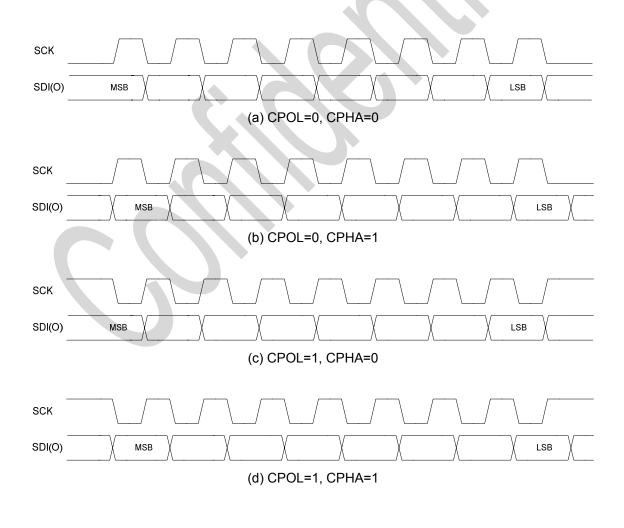
During an SPI transmission, data is simultaneously transmitted(shifted out serially) and received(shifted in serially). The operation is different in a Master mode and a Slave mode

In Master mode, data transmission is done by writing to the SPDR(SPI Data Register,0x2542). Data reception is done by transmitting a meaningless data to SPDR. After transmitting, when SPI interrupt occurs, the value of SPDR register is the received data from SPI slave device. SPDR has same address. However, no data collision has occurred because it has a buffer respectively when writing or reading.

In Slave mode, data transmission is done by writing to the SPDR before generating SPI clock by Master. When a Master generates SPI clock, the data in SPDR of Slave is transferred to a Master and if SPDR is empty, data exchange is failed. Data reception is done by reading SPDR when SPI interrupt occurs.

SPCR (SPI CONTROL REGISTER, 0x2540)

Bit Field	Name	Descriptions	R/W	Reset Value
7	SPIE	SPI Interrupt Enable. When this field is set to '1', SPI interrupt is enabled.	R/W	0
6	SPE	SPI Enable. When this field is set to '1', SPI is enabled.	R/W	0
5		Reserved		0
4	MSTR	Master Mode Select. When this field is set to '1', a Master mode is selected.	R/W	1
3	CPOL	Clock Polarity. If there is no data transmission while this field is set to '0', SCK pin retains '0'. If there is no data transmission while this field is set to '1', SCK pin retains '1'. This field is used to set the clock and data between a Master and Slave with CPHA field. Refer to the below for the more detail explanation.	R/W	0
2	СРНА	Clock Phase. This field is used to set the clock and data between a Master and Slave with CPOL field.	R/W	0
1:0	SPR	SPI Clock Rate Select. With ESPR field in SPER register(0x2543), this field selects SPI clock(SCK) rate when a device is configured as a Master. Refer to the ESPR field.	R/W	0


There are four ways in data transferring by combination of CPOL and CPHA. Polarity of SPI serial clock(SCK) is determined by CPOL value and it determines whether SCK activates high or low.

If CPOL value is '0',SCK pin retains '0' during no data transmission. If CPOL value is '1',SCK pin retains '1' during no data transmission. CPHA field determines the format of data to be transmitted.

CPOL	CPHA	SCK when idle	Data Transition Timing
0	0	Low	Falling Edge of SCK
0	1	Low	Rising Edge of SCK
1	0	High	Rising Edge of SCK
1	1	High	Falling Edge of SCK

The table below describes the clock polarity and the data transition timing.

The following describes when this block is selected as a slave mode. When CPOL value and CPHA value are same, output data is changed at the falling edge of SCK. Input data is captured at the rising edge of SCK. When CPOL value and CPHA value are different, output data is changed at the falling edge of received SCK. Input data is captured at the falling edge of SCK.

SPSR (SPI STATUS REGISTER, 0x2541)

Bit Field	Name	Descriptions	R/W	Reset Value
7	SPIF	SPI Interrupt Flag. When SPI interrupt occurs, this field is set to '1'. This field is set whenever data transmission is finished and it can be cleared by software.	R/W	0
6	WCOL	Write Collision This field is set to '1' when writing data to the SPDR register while SPITX FIFO is full. It can be cleared by software.	R/W	0
5:4		Reserved		0
3	WFFUL	Write FIFO Full. This field is set to '1' when Write FIFO is full. This field is read only.	R/0	0
2	WFEMPTY	Write FIFO Empty. This field is set to '1' when Write FIFO is cleared. This field is read only.	R/0	1
1	RFFUL	Read FIFO Full. This field is set to '1' when Read FIFO is full. This field is read only.	R/O	0
0	RFEMPTY	Read FIFO Empty. This field is set to '1' when Read FIFO is cleared. This field is read only.	R/O	1

SPDR(SPI DATA REGISTER, 0x2542)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SPDR	This register is read/write buffer.	R/W	-

SPER(SPI E REGISTER,0x2541)

Bit Field	Name	Descriptions	R/W	Reset Value
7:6	ICNT	Interrupt Count. This field indicates the number of byte to	R/W	0
		transmit. SPIF bit is set to '1' whenever		

		each byte is transi	nitted.		
5:2		Reserved			0
1:0	ESPR		SPCR Register(0x2540) SPI clock(SCK) rate when a	R/W	2
		{ESPR, SPR} 0000 0001 0010 0011 0100 0101 0110 0111	(System Clock Divider) Reserved 8 32 64 16 128 256		
		1000 1001 1010 1011 * ESPR field : high SPR field: low bit	512 1024 2048 4096 h bit		

The value of ESPR and SPR is used to divide system clock to generate SPI clock(SCK). For example, if the value of ESPR and SPR is '0010' and system clock is 8MHz, SPI clock(SCK) is 1MHz.

7.6.8. VOICE

A voice function includes the following:

- I2S Interface
- Voice CODEC (u-law / a-law / ADPCM)
- Voice FIFO
- DMA

The data generated through an external ADC is input to the voice block in MG2455 via I2S interface. After data received via I2S is compressed at the voice codec, it is stored in Voice TXFIFO. The data in Voice TXFIFO is transferred to MAC TX FIFO through DMA operation and then it is transmitted via PHY.

In contrast, received data in MAC RX FIFO are transferred to Voice RXFIFO. After data in Voice RXFIFO is decompressed at the voice codec, it is transferred to the external DAC via I2S interface.

12S is commonly used for transferring/receiving voice data. As well, voice data can be transferred or received via SPI or UART interface.

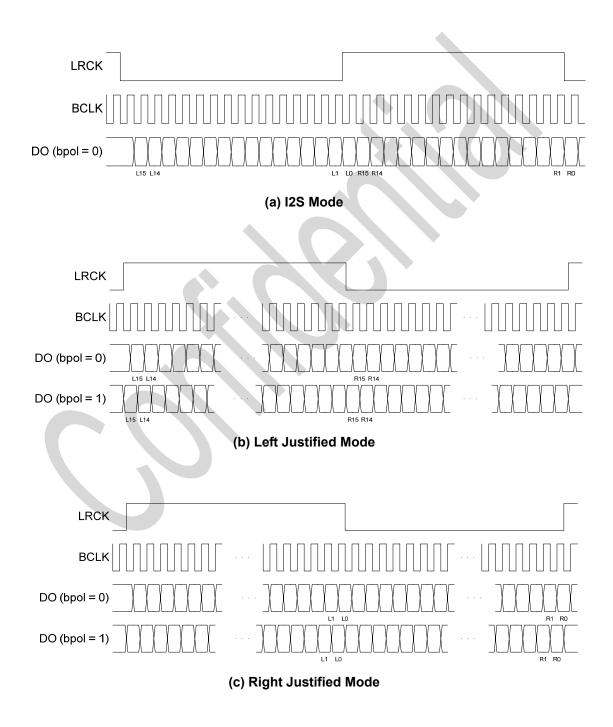
Voice codec supports u-law, a-law and ADPCM method and one of them can be selected. If voice codec function is not needed, it can be bypassed.

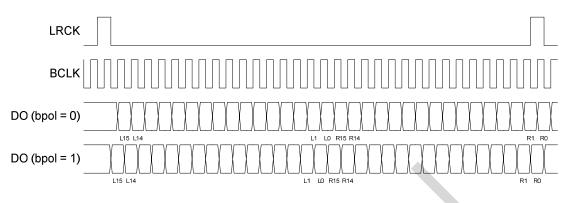
7.6.8.1 I2S

In I2S interface, data is transferred MSB first from the left channel. After that, data is transferred MSB first from the right channel. There are two ways to send data via I2S TX. One is writing data to the register by software. And the other is by hardware. This is enabled by using POP field in STXMODE(0x252d). Similarly, there are two ways to receive data via I2S RX. One is reading the register by software. And the other is by PUSH field in SRXMODE(0x253d) There are four methods in I2S interface as follows.

- I2S mode
- Left Justified mode
- Right Justified mode
- DSP mode

In I2S mode, left channel data is transferred in order. When left channel data is transferred, LRCK value is '0' and when right channel data is transferred, LRCK value is 0. Transferred data and LECK is changed at the falling edge. Refer to the (a) below.


In Left Justified mode, left channel data is transferred whenever LRCK=1. As well, whenever LRCK =0, right channel data is transferred. LRCK is changed at the falling edge of BLCK. Transferred data is changed at the rising edge of BCLK. Refer to the (b) below.


In Right Justified mode, left channel data allows last LSB to be output before LRCK value goes to '0'. As well, right channel data allows last LSB to be output before LRCK value goes to '1'. LRCK value is changed at the falling edge of BCLK. Output data is changed at the rising edge of BCLK. Refer to the (c) below.

In DSP mode, after LRCK outputs to '1' for one period of BCLK, it goes to '0'. After that, left channel data is outputted and then right channel data is outputted. LRCK value is changed at the falling edge of BCLK. Output data is changed at the rising edge of BCLK. Refer to the (d) below.

The following shows the interface method for each mode and I2S TX block is selected as Master. The setting of register is as follows. MS field in STXAIC(0x2528) register is set to '1'. WL field is set to '0'(The data of left and right channel represents 16-bit). Other fields are set to '0'. In ISP mode, BPOL field in STXMODE(0x252D) register is set to '0'. In other modes, BPOL field in STXMODE(0x252D) register is set to '0' or '1' respectively.

(d) DSP Mode

STXAIC (I2S TX INTERFACE CONTROL REGISTER, 0x2528)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MS	When this field is set to '1', Master mode is configured. When this field is set to '0', Slave mode is configured.Any device can act as the system master by providing the necessary clock signals. A slave will usually derive its internal clock signal from an external clock input.	R/W	1
6:5	FMT	Can act as four mode according to the value of this field below. 0: I2S mode 1: Left Justified mode 2: Right Justified mode 3: DSP mode	R/W	2
4:3	WL	Word Length. This field indicates the number of bit per each channel. 0: 16 bit 1: 20 bit 2: 24 bit 3: 32 bit	R/W	0
2	LRSWAP	Left/Right Swap. When this field is set to '1', the order of the channel for transmitting data is changed. In other words, the data in a right channel is transmitted first.	R/W	0
1	FRAMEP	When this field is set to '1', the polarity of LRCK is changed. For example, in Left	R/W	0

		Justified mode, the left channel data is outputted when LRCK=1 and the right channel data is outputted when LRCK=0. However, when this field is set to '1', the right channel data is outputted when LRCK=1 and the left channel data is outputted when LRCK=0.		
0	BCP	When this field is set to '1', the polarity of BCLK(Bit Clock) is changed. Clock edge ,which allows the data change, is changed.	R/W	0

STXSDIV (I2S TX SYSTEM CLOCK DIVISOR REGISTER, 0x252A)

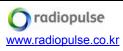
Bit Field	Name	Descriptions	R/O	Reset Value
7:0	STXSDIV	This register set the value for dividing a system clock to generate MCLK. The equation is as follows: MCLK = System Clock/(2×STXSDIV) When this field is '0', MCLK is not generated.	R/O	0x00

STXMDIV (I2S TX MCLK DIVISOR REGISTER, 0x252B)

Bit Field	Name	Descriptions	R/O	Reset Value
7:0	STXMDIV	This register set the value for dividing MCLK to generate BCLK. When STXSDIV register value is '1', BCLK = MCLK/STXMDIV. When STXSDIV register value is greater than 2, BCLK = MCLK/(2×STXMDIV). When this register value is '0', BCLK is not generated.	R/O	0x00

STXBDIV (I2S TX BCLK DIVISOR REGISTER, 0x252C)

Bit Field	Name	Descriptions	R/W	Reset Value	
7:0	STXBDIV	This register set the value for dividing BCLK to generate LRCK. When FMT field in STXAIC(0x2528) register is '0','1','2', LRCK = BCLK/(2×STXBDIV). When FMT field in STXAIC(0x2528) register is '3', LRCK = BCLK/STXBDIV. When this register value is '0', LRCK is not generated.	R/W	0x00	
STXMODE (I2S TX MODE REGISTER, 0x252D)					


STXMODE (I2S TX MODE REGISTER, 0x252D)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7	CSHR	This field is meaningful when I2STX block acts as Slave mode. When this field is set to '1', I2S TX block shares the clock of I2S RX block. In other words, MCLK of I2S RX block is input to the MCLK of I2S TX block and BCLK of I2S RX block is input to the BCLK of I2S TX block. As well, LRCK of I2S RX block is input to the LRCK of I2S TX block.	R/W	1
6	MPOL	This field determines the polarity of MCLK.	R/W	1
		When this field is '0', MCLK signal retains '1'.		
		When this field is '1', MCLK signal retains '0'.		
5	BPOL	This field indicates the relationship between BCLK and LRCK. When this field is set to '0',LRCK value is changed at the falling edge of BCLK.	R/W	1
		When this field is set to '1',LRCK value is changed at the rising edge of BCLK.		
4	B16	This field determines bit width to transfer data in voice block to I2S block.	R/W	1
		When this field is set to '1', data is transferred by 16-bit data format to I2S block.		
		When this field is set to '0', data is transferred by 8-bit data format to I2S block.		
3	POP	When this field is set to '1', data is transferred	R/W	1

		to I2S block. When this field is set to '0', data is not transferred to I2S block.		
2:1	MODE	 This field is set the mode of transferred data. 0: BLK Mode. Transfer a '0'. 1: MRT Mode. Only the data in Right channel is transferred.('0' is transferred in Left channel) 2: MLT Mode. Only the data in Left channel is transferred.('0' is transferred in Right channel) 3: STR Mode. All data in Left or Right channel are transferred. 	R/W	3
0	CLKENA	Clock Enable. When this field is set to '1', I2S TX is enabled.	R/W	0

SRXAIC (I2S RX INTERFACE CONTROL REGISTER, 0x2538)

Bit Field	Name	Descriptions	R/W	Reset Value	
7	MS	When this field is set to '1', Master mode is configured. When this field is set to '0', Slave mode is configured. Any device can act as the system master by providing the necessary clock signals. A slave will usually derive its internal clock signal from an external clock input.	R/W	1	
6:5	FMT	Can act as four mode according to the value of this field below. 0: I2S mode 1: Left Justified mode 2: Right Justified mode 3: DSP mode	R/W	2	
4:3	WL	Word Length. This field indicates the number of bit per each channel. 0: 16 bit 1: 20 bit 2: 24 bit 3: 32 bit	R/W	0	
2	LRSWAP	Left/Right Swap. When this field is set to '1', the order of the channel for transmitting data is changed.	R/W	0	

		In other words, the data in a right channel is transmitted first.		
1	FRAMEP	When this field is set to '1', the polarity of LRCK is changed. For example, in Left Justified mode(FMT=1), data is stored in the left channel when LRCK=1 and data is stored in the right channel when LRCK=0. However, when this field is set to '1', data is stored in the right channel when LRCK=1 and the data is stored in the left channel when LRCK=0.	R/W	0
0	BCP	When this field is set to '1', the polarity of BCLK(Bit Clock) is changed. Clock edge ,which allows the data change, is changed.	R/W	0

SRXSDIV (I2S RX SYSTEM CLOCK DIVISOR REGISTER, 0x253A)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRXSDIV	This register set the value for dividing a system clock to generate MCLK. The equation is as follows: MCLK = System Clock/(2× SRXSDIV) When this field is '0', MCLK is not generated.	R/W	0x00

SRXMDIV (I2S RX MCLK DIVISOR REGISTER, 0x253B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRXMDIV	This register set the value for dividing MCLK to generate BCLK. When SRXSDIV register value is '1', BCLK = MCLK/SRXMDIV. When SRXSDIV register value is greater than 2, BCLK = MCLK/(2×SRXMDIV). When this register value is '0', BCLK is not generated.	R/W	0x00

SRXBDIV (I2S RX BCLK DIVISOR REGISTER, 0x253C)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SRXBDIV	This register set the value for dividing BCLK to generate LRCK. When FMT field in SRXAIC(0x2528) register is '0','1','2', LRCK = BCLK/(2(SRXBDIV). When FMT field in SRXAIC(0x2528) register is '3', LRCK = BCLK/SRXBDIV. When this register value is '0', LRCK is not generated.	R/W	0x00

SRXMODE (I2S RX MODE REGISTER, 0x253D)

Bit Field Name Descriptions R/W Reset Value 7 CSHR This field is meaningful when I2SRX block acts as Slave mode. When this field is set to '1', I2S RX block is input to the MCLK of I2S TX block. In other words, MCLK of I2S TX block is input to the MCLK of I2S RX block and BCLK of I2S RX block. As well, LRCK of I2S RX block is input to the LRCK of I2S RX block. R/W 1 6 MPOL This field is set to '1', MCLK signal retains '1'. When this field is '0', MCLK signal retains '1'. When this field is '1', MCLK signal retains '1'. R/W 1 5 BPOL This field indicates the relationship between BCLK and LRCK. When this field is set to '1', LRCK value is changed at the falling edge of BCLK. R/W 1 4 B16 This field determines bit width to transferred by 8-bit data format to voice block. When this field is set to '1', data is transferred by 8-bit data format to voice block. R/W 1 3 PUSH When this field is set to '1', data received from R/W 1			0, LRCK is not generated.			
FieldImage: constraint of the set of the	SRXMODE (I2S RX MODE REGISTER, 0x253D)					
as Slave mode.When this field is set to '1', I2S RX block shares the clock of I2S TX block. In other words, MCLK of I2S TX block is input to the MCLK of I2S RX block and BCLK of I2S TX block is input to the BCLK of I2S RX block. As well, LRCK of I2S RX block.6MPOLThis field determines the polarity of MCLK. When this field is '0', MCLK signal retains '1'. When this field is '1', MCLK signal retains '0'.R/W5BPOLThis field indicates the relationship between BCLK and LRCK. When this field is set to '0',LRCK value is changed at the falling edge of BCLK.R/W14B16This field determines bit width to transfer data received from external ADC via I2S interface to voice block. When this field is set to '1', data is transferred by 16-bit data format to voice block.R/W1	-	Name	Descriptions	R/W		
When this field is '0', MCLK signal retains '1'. When this field is '1', MCLK signal retains '0'.5BPOLThis field indicates the relationship between BCLK and LRCK. When this field is set to '0',LRCK value is changed at the falling edge of BCLK. When this field is set to '1',LRCK value is changed at the rising edge of BCLK.R/W14B16This field determines bit width to transfer data received from external ADC via I2S interface to voice block. When this field is set to '1', data is transferred 	7	CSHR	as Slave mode. When this field is set to '1', I2S RX block shares the clock of I2S TX block. In other words, MCLK of I2S TX block is input to the MCLK of I2S RX block and BCLK of I2S TX block is input to the BCLK of I2S RX block. As well, LRCK of I2S TX block is input to the	R/W	0	
 BCLK and LRCK. When this field is set to '0',LRCK value is changed at the falling edge of BCLK. When this field is set to '1',LRCK value is changed at the rising edge of BCLK. B16 This field determines bit width to transfer data received from external ADC via I2S interface to voice block. When this field is set to '1', data is transferred by 16-bit data format to voice block. When this field is set to '0', data is transferred by 8-bit data format to voice block. 	6	MPOL	When this field is '0', MCLK signal retains '1'.	R/W	1	
received from external ADC via I2S interface to voice block. When this field is set to '1', data is transferred by 16-bit data format to voice block. When this field is set to '0', data is transferred by 8-bit data format to voice block.	5	BPOL	BCLK and LRCK. When this field is set to '0',LRCK value is changed at the falling edge of BCLK. When this field is set to '1',LRCK value is	R/W	1	
3 PUSH When this field is set to '1', data received from R/W 1	4	B16	received from external ADC via I2S interface to voice block. When this field is set to '1', data is transferred by 16-bit data format to voice block. When this field is set to '0', data is transferred	R/W	1	
	3	PUSH	When this field is set to '1', data received from	R/W	1	

		external ADC via I2S interface is transferred to voice block.		
		When this field is set to '0', data received from external ADC via I2S interface is not transferred to voice block.		
2:1	MODE	 This field is set the mode of transferred data. 0: BLK Mode. Transfer a '0'. 1: MRT Mode. Only the data in Right channel is transferred.('0' is transferred in Left channel) 2: MLT Mode. Only the data in Left channel is transferred.('0' is transferred in Right channel) 3: STR Mode. All data in Left or Right channel are transferred. 	R/W	3
0	CLKENA	Clock Enable. When this field is set to '1', I2S RX is enabled.	R/W	0

7.6.8.2 VOICE CODEC

MG2455 includes three voice codec.

- µ-law
- a-law
- ADPCM

The µ-law algorithm is a companding algorithm primarily used in the digital telecommunication systems of North America and Japan. As with other companding algorithms, its purpose is to reduce the dynamic range of an audio signal. In the analog domain this can increase the signal-to-noise ratio (SNR) achieved during transmission and in the digital domain, it can reduce the quantization error (hence increasing signal to quantization noise ratio). These SNR increases can be traded instead for reduced bandwidth for equivalent SNR.

An a-law algorithm is a standard companding algorithm used in European digital communications systems to optimize, i.e., modify, the dynamic range of an analog signal for digitizing.

The a-law algorithm provides a slightly larger dynamic range than the μ -law at the cost of worse

proportional distortion for small signals.

Adaptive DPCM (ADPCM) is a variant of DPCM that varies the size of the quantization step, to allow further reduction of the required bandwidth for a given signal-to-noise ratio. Differential (or Delta) pulse-code modulation (DPCM) encodes the PCM values as differences between the current and the previous value. For audio this type of encoding reduces the number of bits required per sample by about 25% compared to PCM.

In order to control voice codec, there are several registers. This section describes major registers used commonly. If you need more detail information, please contact to RadioPulse Inc.

Bit Field	Name	Descriptions	R/W	Reset Value
7:6		Reserved	R/W	0
5	B16	When the bit width of data received to voice encoder is 16-bit, set this field to '1'. When the bit width of data received to voice encoder is 8-bit, set this field to '0'.	R/W	0
4	MUT	Mute Enable. When this field is set to '1', Mute function is enabled. ENCMUT1and ENCMUT0 value is inputted to voice encoder block.	R/W	0
3:2	SEL	Encoder Select. Select voice encoder. 0: No Encoding 1: μ-law 2: a-law 3: ADPCM	R/W	0
1	INI	Encoder Initialize. When this field is set to '1', the pointer in voice encoder is initialized. This field cannot be read.	W	0
0	ENA	Encoder Enable. When this field is set to '1', voice encoder acts.	R/W	0

ENCCTL (VOICE ENCODER CONTROL REGISTER, 0x2745)

DECCTL (VOICE DECODER CONTROL REGISTER, 0x274D)

Bit Field	Name	Descriptions	R/W	Reset Value
7	LPB	Loopback Test. When this field is set to '1', Loopback test mode is selected. In this case, the output of voice encoder is connected to the input of voice decoder.	R/W	0
6		Reserved	R/W	0
5	B16	The bit width of data which is output from voice decoder is 16-bit, set this field to '1'. When this field is set to '0', the bit width of data which is output from voice decoder is 8-bit.	R/W	0
4	MUT	Mute Enable. When this field is set to '1', Mute function is enabled. DECMUT1 and DECMUT0 value is transferred from voice decoder.	R/W	0
3:2	SEL	Decoder Select. Select voice decoder. 0: No Decoding 1: µ-law 2: a-law 3: ADPCM	R/W	0
1	INI	When this field is set to '1', the pointer in voice decoder is initialized. This field cannot be read.	W	0
0	ENA	Decoder Enable. When this field is set to '1', voice decoder acts.	R/W	0

7.6.8.3 VOICE FIFO

Data received via I2S interface is compressed by voice codec and compressed data is stored in Voice TXFIFO(0x2600~0x267F). The size of Voice TXFIFO is 128 byte.

After data in MAC RXFIFO is processed by DMA operation, it is stored in Voice RX FIFO(0x2680~0x26FF). Data in Voice RXFIFO is decompressed on the voice codec and it is transmitted to the external component via I2S. The size of Voice RXFIFO is 128 byte.

7.6.8.4 VOICE TX FIFO CONTROL

VTFDAT (VOICE TX FIFO DATA REGISTER, 0x2750)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTFDAT	When writing data to this register, data is stored in Voice TX FIFO in order. When reading this register, data stored in Voice TX FIFO can be read.	R/W	0x00

VTFMUT (VOICE TX FIFO MUTE DATA REGISTER, 0x2751)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTFMUT	When MUT field in VTFCTL register is set to '1', data in this register is transferred instead of data in Voice TX FIFO. When INI field in VTFCTL register is set to '1',data in Voice TX FIFO is initialized by data in VTFMUT.	R/W	0x00

VTFCTL (VOICE TX FIFO CONTROL REGISTER, 0x2752)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved		0

3	VTDENA	Voice TX DMA Enable. When this field is set to '1',Voice TX DMA is enabled. This field value is cleared automatically.	W/O	0
2	MUT	When this field is set to '1', data in VTFMUT register is transferred instead of data in Voice TX FIFO. This field can be read.	R/W	0
1	CLR	When this field is set to '1', Write pointer and Read pointer of Voice TX FIFO are initialized. The status value of underflow and overflow is initialized.	W/O	0
0	INI	When this field is set to '1', all data in Voice TXFIFO are replaced by the value in VTFMUT register.	W/O	0

VTFRP (VOICE TX FIFO READ POINTER REGISTER, 0x2753)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTFRP	This register indicates the address of Voice TXFIFO to be read next. Since the size of FIFO is 128 byte, LSB is used to test wraparound.	R/W	0x00

VTFWP (VOICE TX FIFO WRITE POINTER REGISTER, 0x2754)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTFWP	This register indicates the address of Voice TXFIFO to be written next. Since the size of FIFO is 128 byte, LSB is used to test wraparound.	R/W	0x00

VTFSTS (VOICE TX FIFO STATUS REGISTER, 0x275A)

Bit Field	Name	Descriptions	R/W	Reset Value
				value
7:5		Reserved		0
4	ZERO	When INI field in VTFCTL register is set to '1', data in Voice TX FIFO is initialized by data in VTFMUT register. During this initialization is processed, this field is set to '1'. After initialization is finished, this field is set to '0'.	R/O	0
3	PSH	This field is set to '1' while pushing data into Voice TX FIFO.	R/0	0
2	POP	This field is set to '1' while popping data on Voice TX FIFO.	R/0	0
1:0		Reserved		0

VTDSIZE (VOICE TX DMA SIZE REGISTER(VOICE TX FIFO->MAC TX FIFO), 0x275B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VTDSIZE	Set the data size for DMA operation.	R/W	0x00

7.6.8.5 VOICE RX FIFO CONTROL

VRFDAT (VOICE RX FIFO DATA REGISTER, 0x2760)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFDAT	When writing data to this register, data is stored in Voice RX FIFO in order. When reading this register, data stored in Voice RX FIFO can be read.	R/W	0x00

VRFMUT (VOICE RX FIFO MUTE DATA REGISTER, 0x2761)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFMUT	When MUT field in VRFCTL register is set to '1', data in this register is transferred instead of data in Voice RX FIFO. When INI field in VRFCTL register is set to '1',data in Voice RX FIFO is initialized by data in VTFMUT.	R/W	0x00

VRFCTL (VOICE RX FIFO CONTROL REGISTER, 0x2762)

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved		0
3	VRDENA	Voice RX DMA Enable. When this field is set to '1',Voice RX DMA is enabled. This field value is cleared automatically.	W/O	0
2	MUT	When this field is set to '1', data in VRFMUT register is transferred instead of data in Voice RX FIFO. This field can be read.	R/W	0
1	CLR	When this field is set to '1', Write pointer and Read pointer of Voice RX FIFO are initialized. The status value of underflow and overflow is initialized.	W/O	0
0	INI	When this field is set to '1', all data in Voice RXFIFO are replaced by the value in VRFMUT register.	W/O	0

VRFRP (VOICE RX FIFO READ POINTER REGISTER, 0x2763)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFRP	This register indicates the address of Voice RXFIFO to be read next. Since the size of FIFO is 128 byte, LSB is used to test wrap-around.	R/W	0x00

VRFWP (VOICE RX FIFO WRITE POINTER REGISTER, 0x2764)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRFWP	This register indicates the address of Voice RXFIFO to be written next. Since the size of FIFO is 128 byte, LSB is used to test wrap- around	R/W	0x00

VRFSTS (VOICE RX FIFO STATUS REGISTER, 0x276A)

-

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:5		Reserved		0
4	ZERO	When INI field in VRFCTL register is set to '1', data in Voice TX FIFO is initialized by data in VRFMUT register. During this initialization is processed, this field is set to '1'. After initialization is finished, this field is set to '0'.	R/O	0
3	PSH	This field is set to '1' while pushing data into Voice RX FIFO.	R/O	0
2	POP	This field is set to '1' while popping data on Voice RX FIFO.	R/O	0
1:0		Reserved		0

VRDSIZE (VOICE RX DMA SIZE REGISTER(MAC RX FIFO->VOICE RX FIFO), 0x276B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	VRDSIZE	Set the data size for DMA.	R/W	0x00

7.6.8.6 VOICE INTERFACE CONTROL

VTFINTENA (VOICE TX FIFO INTERRUPT ENABLE REGISTER, 0x2770)

Bit Field	Name	Descriptions	R/W	Reset Value
7	EMPTY	Voice TX FIFO Empty Interrupt Enable	R/W	0
6	FULL	Voice TX FIFO Full Interrupt Enable	R/W	0
5:0		Should be set as '0'.		0

VRFINTENA (VOICE RX FIFO INTERRUPT ENABLE REGISTER, 0x2771)

Bit Field	Name	Descriptions	R/W	Reset Value
7	EMPTY	Voice RX FIFO Empty Interrupt Enable	R/W	0
6	FULL	Voice RX FIFO Full Interrupt Enable	R/W	0
5:0		Should be set as '0'.		0

VDMINTENA (VOICE DMA CONTROLLER INTERRUPT ENABLE REGISTER, 0x2772)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Should be set as '0'.		0
4	VTDDONE	Voice TX DMA Done Interrupt Enable	R/W	0
3:1		Should be set as '0'.		0
0	VRDDONE	Voice RX DMA Done Interrupt Enable	R/W	0

VTFINTSRC (VOICE TX FIFO INTERRUPT SOURCE REGISTER, 0x2773)

Bit Field	Name	Descriptions	R/W	Reset Value
7	EMPTY	Voice TX FIFO Empty Interrupt Source. When EMPTY field in VTFINTENA register is set to '1' and EMPTY field in VTFINTVAL register is set to '1', this field is set to '1'. Cleared by software.	R/W	0
6	FULL	Voice TX FIFO Full Interrupt Source	R/W	0
5:0		Reserved		0

VRFINTSRC (VOICE RX FIFO INTERRUPT SOURCE REGISTER, 0x2774)

Bit Field	Name	Descriptions	R/W	Reset Value
7	EMPTY	Voice RX FIFO Empty Interrupt Source	R/W	0
6	FULL	Voice RX FIFO Full Interrupt Source	R/W	0
5:0		Reserved		0

VDMINTSRC (VOICE DMA CONTROLLER INTERRUPT SOURCE REGISTER, 0x2775)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Should be set as '0'.		0
4	VTDDONE	Voice TX DMA Done Interrupt Source	R/W	0
3:1		Should be set as '0'.		0
0	VRDDONE	Voice RX DMA Done Interrupt Source	R/W	0

SRCCTL (VOICE SOURCE CONTROL REGISTER, 0x277A)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Should be set as '0'.		0
6:5	MUX	Selects the specific interface to communicate between voice codec and an external data. 0: I2S 1: SPI 2: UART0 3: UART1	R/W	0
4:0		Should be set as '0'.		0

VSPCTL (VOICE SOURCE PATH CONTROL REGISTER, 0x277E)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved		0
6	DECMUT	This register is used to send mute data from voice decoder to external interface. When this field is set to '1', VSPMUT1 and VSPMUT0 value are transferred to the external interface.	R/W	0
5	DECINI	When using 8-bit external interface,16-bit data transferred from voice decoder needs to be changed to 8-bit. When this field is set to '1', corresponding control circuit is initialized.	R/W	0
4	DECB16	When using 8-bit external interface such as UART and so on, 16-bit data transferred from voice decoder needs to be changed to 8-bit. When this field is set to '1', high 8-bit data of 16-bit data is transferred first and then low 8-bit data is transferred.	R/W	0
3		Reserved		0
2	ENCMUT	This register is used to send mute data from external interface to voice encoder. When this field is set to '1', VSPMUT1and VSPMUT0 value are transferred to voice encoder.	R/W	0

1	ENCINI	When using 8-bit external interface,16-bit data transferred to voice encoder needs to be changed to 16-bit. When this field is set to '1', corresponding control circuit is initialized.	R/W	0
0	ENCB16	When using 8-bit external interface,8-bit input data needs to be changed to 16-bit, which is compatible with the voice encoder. When this field is set to '1', it is changed to 16-bit.(8-bit received first: high bit 8-bit received later: low bit)	R/W	0

7.6.9. RANDOM NUMBER GENERATOR (RNG)

Random Number Generator generates 32-bit random number with seed. Whenever ENA bit in RNGC register is set to '1', generated number is stored in RNGD3 ~ RNGD0 register.

RNGD3 (RNG DATA3 REGISTER, 0x2550)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RNGD3	This register stores MSB(RNG[31:24]) of 32- bit random number.	R/O	0xB7

RNGD2 (RNG DATA2 REGISTER, 0x2551)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RNGD2	This register stores 2thMSB(RNG[23:16]) of 32-bit random number.	R/0	0x91

RNGD1 (RNG DATA1 REGISTER, 0x2552)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RNGD1	This register stores 3 rd MSB(RNG[15:8]) of 32-bit random number.	R/0	0x91

RNGD0 (RNG DATA0 REGISTER, 0x2553)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RNGD0	This register stores LSB(RNG[7:0]) of 32-bit random number.	R/O	0xC9

SEED3 (RNG SEED3 REGISTER, 0x2554)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED3	This register stores MSB(SEED[31:24]) of required seed to generate random number.	W/O	-

SEED2 (RNG SEED2 REGISTER, 0x2555)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED2	This register stores 2th MSB(SEED[23:16]) of required seed to generate random number.	W/O	0x00

SEED1 (RNG SEED1 REGISTER, 0x2556)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED1	This register stores 3 rd MSB(SEED[15:8]) of required seed to generate random number.	W/O	0x00

SEED0 (RNG SEED0 REGISTER, 0x2557)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SEED0	This register stores LSB(SEED[7:0]) of required seed to generate random number.	W/O	0x00

RNGC (RNG DATA3 REGISTER, 0x2558)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved		0
0	ENA	RNG Enable. When this field is set to '1', RNG acts. This field value is changed to '0' automatically.	R/W	0

7.6.10. QUAD DECODER

Quad Decoder block informs the counter value based on direction and movement of pointing device after receiving Quadrature signal from the pointing device such as mouse.

Quadrature signal is changed with 90° phase difference(1/4 period) between two signals as following [Figure15] In addition, counter value means 1/4 of one period. Since this block can receive three Quadrature signals, it can support not only the two-dimensional movement such as mouse but also the pointing device which is in three dimensions.

(a) in [Figure15] shows that XA signal is changing first rather than XB signal. In this case, pointing device acts to the down direction. (b) in [Figure15]shows that XB signal is changing first rather than XA signal. In this case, pointing device acts to the up direction. YA,YB,ZA and ZB are applied same as described above.

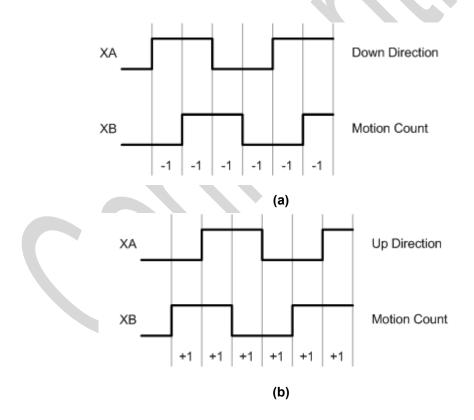


Figure 15. Quadrature signal between XA and XB signal.

UDX (UpDown X Register, 0x2560)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved		0
0	UPDN_X	This field informs the movement for X-axis direction. 1: Up 0: Down	R/O	0

CNTX (Count X Register, 0x2561)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTX	This field informs the count value for the movement of X-axis direction.	R/O	0x00

UDY (UpDown Y Register, 0x2562)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved		
0	UPDN_Y	This field informs the movement for Y-axis direction. 1: Up 0: Down	R/O	0

CNTY (Count Y Register, 0x2563)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTY	This field informs the count value for the movement of Y-axis direction.	R/O	0x00

UDZ (UpDown Z Register, 0x2564)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved		0x00
0	UPDN_Z	This field informs the movement for Z-axis direction.	R/O	0
		1: Up		
		0: Down		

CNTZ (Count Z Register, 0x2565)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	CNTZ	This field informs the count value for the movement of Z-axis direction.	R/O	0x00

QCTL (Quad Control Register, 0x2566)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved		х
2	ENA	Quad Enable. When this field is set to '1', Quad Decoder is enabled.	R/W	
1	INI	Quad Initialize. When this field is set to '1', internal register values of Quad Decoder is initialized.	R/W	
0	MODE	Mode Select. When this field is set to '1', counter value is increased at the point of being changing movement direction. When this field is set to '0',current counter value is decreased at the point of changing movement direction.	R/W	0

7.6.11. INTERNAL VOLTAGE REGULATOR

There are Analog regulator and Digital regulator in MG2455. Analog regulator supplies power to the RF and analog blocks. Digital regulator supplies power to digital blocks. MSV, an external pin, sets output power. When MSV is set to '0', 1.5V is generated and when MSV is set to '1'. 1.8V is generated. AVREG3V and DVREG3V, an external pin, should be connected to 3V in order to operate internal regulator.

7.6.12. 4-CHANNEL 8-BIT SENSOR ADC

This block monitors external sensor output and converts the external analog signal into the corresponding digital value. The output of the sensor ADC is 8-bit wide and sampling frequency is fixed to 8KHz. For the Sensor ADC control register, refer to the SADCCON(0x22AB), SADCVALH(0x22AC),SADCVALL(0x22AD),SADCBIASH(0x22AE),and SADCBIASL (0x22AF).

SADCCON (SENSOR ADC CONTROL REGISTER, 0x22AB)

This register controls sensor ADC operation.

Bit	Name	Description	S		RW	Reset Value
7	SADCEN	Sensor AD	C Enable		RW	0
6	SADCDONE			ADCVALH and SADCVALL DCDONE is set to '1'.	RO	0
5:4	SADCREF	Select the r	elect the reference voltage for the sensor ADC.			
		SADCRE F	Reference	Description		
		00	Internal	TOP = 1.2V		
				BOT = 0.3V		
				VMID = 0.75V		
		01		Reserved		
		10	External	TOP = ACH2		
				BOT = ACH3		
			•	•		

				VM	ID = (ACH2+ACH3)/2		
		11	External	TOF	P = VDD		
				BO	T = GND		
				VM	ID = (VDD+GND)/2		
3:0	SADCCH					RW	0
		SSADCCH	Input		Description		
		0000	ACH0		Single input		
		0001	ACH1		Single input		
		0010	ACH2		Single input		
		0011	ACH3		Single input		
		0100	ACH0, ACH	11	Differential input		
		0101	ACH2, ACH	13	Differential input		
		0110	Temperatur	е	Embedded		
			Sensor		temperature sensor		
		0111	Battery Mor	nitor	Embedded battery		
					monitor		
		1000	GND		Just for calibration		
		1001	VDD		Just for calibration		
		others			Reserved		
		Select the in	nput channel o	of ser	nsor ADC		

SADCVALH (SENSOR ADC OUTPUT VALUE HIGH DATA REGISTER, 0x22AC)

This register stores the output value of sensor ADC (SADCVAL). SADCVAL, which is a 15bit unsigned integer value, is stored in the SADCVALH and SADCVALL register. SADCVALH stores 8 bit MSB of SADCVAL (SADCVAL[14:7]).

Bit	Name	Descriptions	RW	Reset Value
7:0	SADCVALH	SADCVAL[14:7]	RO	0x00

SADCVALL (SENSOR ADC OUTPUT VALUE LOW DATA REGISTER, 0x22AD)

This register stores the output value of sensor ADC. SADCVAL, which is a 15bit unsigned integer value, outputs 15-bit data by SADCVALH and SADCVALL register. Only high 8-bit is valid. This register represents low 7-bit data(SADCVAL[6:0])of 15-bit data.

Bit	Name	Descriptions	RW	Reset Value
7:1	SADCVALL	SADCVAL[6:0]	RO	0x00
0		Reserved		0

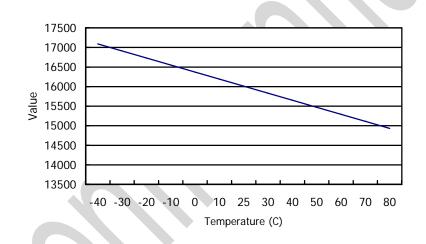
SADCBIASH (SENSOR ADC DC BIAS HIGH DATA REGISTER, 0x22AE)

This register is used to compensate the DC bias of the sensor ADC output. SADCBIAS, which is a 15-bit unsigned integer value, is stored in the SADCBIASH and SADCBIASL registers. SADCBIASH register stores the most significant 8bit of SADCBIAS (SADCBIAS[14:7]).

Bit	Name	Descriptions	RW	Reset Value
7:0	SADCBIAS H	SADCBIAS[14:7]	RW	0x00

SADCBIASL (SENSOR ADC DC BIAS LOW DATA REGISTER, 0x22AF)

This register is used to compensate the DC bias of the sensor ADC output. SADCBIASL register stores the least significant 7bit of SADCBIAS (SADCBIAS[6:0]).


Bit	Name	Descriptions	RW	Reset Value
7:1	SADCBIASL	SADCBIAS[6:0]	RW	0x00
0		Reserved		0

7.6.13. ON-CHIP POWER-ON RESET

This block generates the reset signal to initialize the digital block when power-up. When On-chip regulator output or external battery is used as the power of digital core block and power is provided, it outputs the internal reset signal.

7.6.14. TEMPERATURE SENSOR

The on-chip temperature sensor can be used to detect changes in the ambient temperature. To control the functionality of this block, refer to the section 7.6.12. The output of this block is -1.95mV/°C

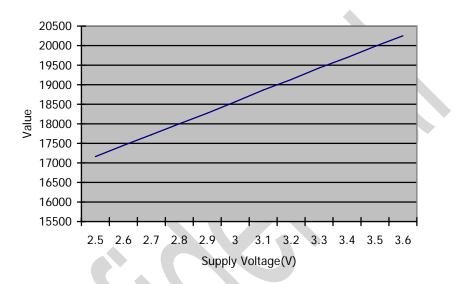


Figure 16. Temperature Sensor Characteristics

7.6.15. BATTERY MONITORING

This block is used to monitor the voltage level of the supplied power. It can monitor the voltage level of the external voltage(3V). To control the functionality of this block, refer to the section 7.6.12. [Figure17] below describes the output value corresponding to the input voltage.

7.7. MAC

MAC block processes a command received from high layer(MCU), transmits the data itself received from high layer to baseband modem, or encrypts it and then transmits to baseband modem. In addition, it indicates the status of PHY and transmits the data itself received from baseband modem to high layer, or transmits the decrypted data to high layer.

The function of MAC block is to transfer the data from higher layer to PHY block, to send the received data from PHY to higher layer. Also, it can encrypt or decrypt the data.. The [Figure18] shows MAC block diagram.

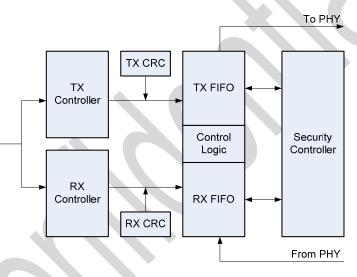


Figure 18. MAC block diagram

IEEE802.15.4 Frame Format

IEEE802.15.4 transmits the data in packets. and each packet has a frame format. [Figure19] shows a schematic view of the IEEE 802.15.4 frame format.

The PHY frame to be transmitted consists of preamble, SOF(start of frame delimiter), frame length and PSDU fields. Preamble is used to adjust the gain of receiving signal and obtain synchronization at received stage. The start of frame delimiter is used to indicate the starting position of the frame and obtain exact frame timing synchronization. Frame length is consisted of 1 byte and it is used to indicate the PSDU length which is varied up to maximum 127 bytes.

PSDU belongs to MPDU(MAC protocol data unit)

MPDU means the frame format generated in MAC layer(medium access control layer) and it is consisted of frame control field, data sequence number, address information, frame payload and FCS(frame check sequence) field.

The area including a frame control field, a data sequence number field, a address information field is defined as MAC header. FCS field is defined as MAC footer. The data which is transmitted from higher layer is located in MAC payload. For the detail information of a frame format, refer to the IEEE802.15.4 standard.

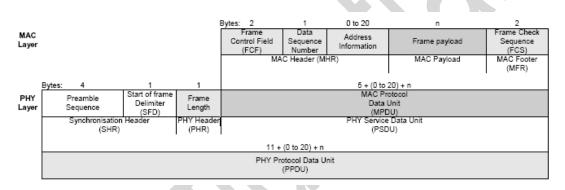


Figure 19. IEEE 802.15.4 Frame Format

Synchronization Header (SHR)

In IEEE802.15.4 standard, a frame format includes SHR(synchronization header) for the purpose of adjusting the gain of receiving signal, detecting packet and obtaining synchronization. SHR is consisted of preamble and SFD. Preamble is formatted by repeating the 8 same symbol('0') belongs to 4 bytes. 1 byte SFD is used to detect the frame start and obtain timing synchronization and it is defined as 0XA7 in IEEE802.15.4 standard.

PHY Header (PHR)

Length field is used to clarify the size of MPDU or PSDU.

The value clarified in length field doesn't includes length field itself. However, the length of FCS(Frame Check Sequence) is included. PHY block takes data as much as the size clarified in

length field from TX FIFO. After that, PHY block transmits the data.

MAC Header (MHR)

This field is consisted of frame control field (FCF), data sequence number (DSN) and address information. FCF includes the frame information such as frame type or addressing mode and so on. DSN means the sequence of packet. In other words, DSN is incremented after transmitting. Therefore, next packet has a different DSN. For the detail information, refer to the IEEE802.15.4 standard.

MAC Footer (MFR)

This field is called as frame check sequence (FCS) and it follows the last data of MAC payload byte. FCS polynomial is as follows.

x16 + x12 + x5 + 1

7.7.1. RECEIVED MODE

When receiving the data from PHY block, MAC block stores the data in RX FIFO by hardware. The data in RX FIFO can be decrypted by PCMD1 (0X2201) register or it can be read by MRFCPOP(0x2080) register. Data decryption is implemented by AES-128 algorithm and it supports CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4. RX Controller controls the process described above. When decrypting the data, received frame data length is modified and modified value is stored in LSB of each frame again by hardware.

The size of RX FIFO is 256 bytes and it is implemented by Circular FIFO with Write Pointer and Read Pointer. RX FIFO can store several frame data received from PHY block. Since LSB of each frame data represents the frame data length, it can be accessed by Write pointer and Read Pointer.

When the data is received from PHY block, CRC information is checked to verify data integrity. When AUTO_CRC control bit of MACCTRL(0x2191) register is set to '1', CRC information is verified by RX CRC block automatically. To check the result, refer to CRC_OK field of MACSTS(0x2180) register. When the value of CRC_OK field is set to '1', there is no problem for CRC. When AUTO_CRC control bit of MACCTRL(0x2191) register is not set to '1', CRC information should be verified by software.

When a packet reception is completed in PHY block, PHY interrupt occurs to MCU. In addition, when decryption operation is completed, AES interrupt occurs to MCU.

7.7.2. TRANSMIT MODE

To transmit the data from higher layer(MCU) to PHY block, store the data in TX FIFO of MAC block. When MCU writes data in MTFCPUSH(0x2000) register, data is stored in TX FIFO of MAC. The size of TX FIFO is 256 byte and it is implemented by Circular FIFO with Write Pointer and Read Pointer. Since each data in TX FIFO is mapped to the memory area in MCU, it can be written or read directly by MCU.

The data stored in TX FIFO can be encrypted by PCMD1(0x2201) register or is transmitted to PHY block by PCMD0(0x2200) register. TX Controller controls the process described above. Data encryption is implemented by AES-128 algorithm and it supports CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4. The data length which is to be transmitted is stored in LSB of each frame and it is stored by software when the frame data is stored in TX FIFO by MCU. When the data in TX FIFO is encrypted, the data length is modified and it is stored by hardware again.

When transmitting the data in TX FIFO, CRC operation is processed to verify data integrity. When AUTO_CRC control bit of MACCTRL (0x2191) register is set to '1', CRC information is generated by TX CRC block automatically. Otherwise, CRC operation should be operated by software.

When data encryption is completed, AES interrupt occurs to MCU. When the data transmission is completed during transmitting the data to PHY block, PHY interrupt occurs to MCU.

7.7.3. DATA ENCRYPTION AND DECRYPTION

Data encryption or decryption is done by security controller block. Security Controller consists of the block for processing encryption /decryption operation and the block for controlling it. In order to implement CCM* mode by ZigBee and CTR/CBC-MAC/CCM mode by IEEE 802.15.4, 128-bit key value and nonce is needed. MG2455 can have two 128-bit key, KEY0 and KEY1. For encryption, desired nonce value should be stored in TX Nonce and KEY0 or KEY1 is should be selected for use. For decryption, desired nonce value should be stored in RX Nonce and KEY0 or KEY1 is should be selected for use. For decryption, desired nonce value should be stored in RX Nonce and KEY0 or KEY1 is should be selected for use. For more detail information, refer to the IEEE802.15.4 standard document.

Only for AES operation, SAES(0x218E) register is used. In this case, required data for this operation should be stored in SABUF register and KEY0 or KEY1 is should be selected for use.

The following describes the registers for controlling MAC TX FIFO.

MTFCPUSH (TX FIFO PUSH DATA REGISTER, 0x2000)

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:0	MTFCPUSH	When data is written to this register, it is stored in TX FIFO. The size of TX FIFO is 256 byte and it can be accessed by MCU or VTXDMA.	W/O	0x00

MTFCWP (TX FIFO WRITE POINTER REGISTER, 0x2001)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCWP	TX FIFO Write Pointer Total is 9-bit with MTFCWP8 in MTFCSTS register. It is increased by '1' whenever writing data to TX FIFO.	R/W	0x00

MTFCRP (TX FIFO READ POINTER REGISTER, 0x2002)


Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCRP	TX FIFO Read Pointer Total is 9-bit with MTFCRP8 in MTFCSTS register. It is increased by '1' whenever reading data from TX FIFO.	R/W	0x00

MTFCCTL (TX FIFO CONTROL REGISTER, 0x2003)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved		0x00
2	ASA	When this field is set to '1', it automatically sets the starting address of packet and the length of packet encrypted by AES engine to the information of packet which is to be transmitted.	RW	1
1	ENA	When this field is set to '1', MTXFIFO is enabled.	RW	1
0	CLR	When this field is set to '1', MTFCWP, MTFCRP, MTFCSTS, MTFCSIZE, MTFCRM register is initialized.	RW	0

MTFCSTS (TX FIFO STATUS REGISTER, 0x2004)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MTFCWP8	Total is 9-bit address with MTFCWP register. This field is MSB. This field is used to detect wrap around of circular FIFO.	R/W	0
6	MTFCRP8	Total is 9-bit address with MTFCRP register. This field is MSB. This field is used to detect wrap around of circular FIFO.	R/W	0
5:2		Reserved		0
1	FULL	This field is set to '1' when data size in MTXFIFO is 256 byte. Only can be read.	R/W	0
0	EMPTY	This field is set to '1' when data size in	R/W	0

	MTXFIFO is '0'. Only can be read.	

MTFCSIZE (TX FIFO Data Size Register, 0x2005)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCSIZE	This field represents the number of valid data byte of TX FIFO. This field value is valid when FIFO status is normal and it is calculated by the difference between MTFCWP (0x2001) and MTFCRP (0x2002).	R/O	0x00

MTFCSBASE (TX FIFO AES ENCRYPTION DATA START POINTER REGISTER, 0x2007)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCSBASE	This field represents the starting address of data to be encrypted by AES engine in TX FIFO. This field is set by MCU or is automatically set to the starting address of packet to be transmitted when ASA field in MTFCCTL register is set to '1'.	R/W	0x00

MTFCSLEN (TX FIFO AES ENCRYPTION DATA LENGTH REGISTER, 0x2008)

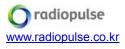
Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MTFCSLEN	This field represents the length of data to be encrypted by AES engine in TX FIFO. This field is set by MCU or is automatically set to the length of packet to be transmitted when ASA field in MTFCCTL register is set to '1'.	R/W	0x00

The following describes the registers for controlling MAC RX FIFO.

MRFCPOP (RX FIFO POP Data Register, 0x2080)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCPOP	This register can read data in RX FIFO. The size of RX FIFO is 256 byte and it can be accessed by MCU or VRXDMA.	W/O	0x00

MRFCWP (RX FIFO WRITER POINTER REGISTER, 0x2081)


Bit Field	Name	Descriptions	R/W	Reset Value
0x2081	MRFCWP	RX FIFO Write Pointer Total is 9-bit with MRFCWP8 in MRFCSTS register. It is increased by '1' whenever writing data to RX FIFO.	R/W	0x00

MRFCRP (RX FIFO READ POINTER REGISTER, 0x2082)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCRP	RX FIFO Read Pointer Total is 9-bit with MRFCRP8 in MRFCSTS register. It is increased by '1' whenever reading data from RX FIFO.	R/W	0x00

MRFCCTL (RX FIFO CONTROL REGISTER, 0x2083)

Bit Field	Name	Descriptions	R/W	Reset Value
7:3		Reserved		0x00
2	ASA	When this field is set to '1', it automatically sets the starting address of packet and the length of packet decrypted by AES engine to the information of received packet.	RW	1

1	ENA	When this field is set to '1', MRXFIFO is enabled.	RW	1
0	CLR	When this field is set to '1', MRFCWP, MRFCRP, MRFCSTS, MRFCSIZE, MRFCRM register is initialized.	RW	0

MRFCSTS (RX FIFO STATUS REGISTER, 0x2084)

Bit Field	Name	Descriptions	R/W	Reset Value
7	MRFCWP8	Total is 9-bit address with MRFCWP register. This field is MSB. This field is used to detect wrap around of circular FIFO.	R/W	0
6	MRFCRP8	Total is 9-bit address with MRFCRP register. This field is MSB. This field is used to detect wrap around of circular FIFO.	R/W	0
5:2		Reserved		0
1	FULL	This field is set to '1' when data size in RX FIFO is 256 byte. Only can be read.	R/W	0
0	EMPTY	This field is set to '1' when data size in RX FIFO is '0'. Only can be read.	R/W	0

MRFCSIZE (RX FIFO Data Size Register, 0x2085)

7:0 MRFCSIZE This field represents the number of valid data byte of RX FIFO. This field value is valid when FIFO status is normal and it is calculated by the difference between MRFCWP and MRFCRP.	Bit Field	Name	Descriptions	R/W	Reset Value
	7:0	MRFCSIZE	data byte of RX FIFO. This field value is valid when FIFO status is normal and it is calculated by the difference between	R/O	0x00

MRFCSBASE (RX FIFO AES DECRYPTION DATA START POINTER REGISTER, 0x2087)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCSBASE	This field represents the starting address of data to be decrypted by AES engine in RX FIFO. This field is set by MCU or is automatically set to the starting address of received packet when ASA field in	R/W	0x00

	MRFCCTL register is set to '1'.	

MRFCSLEN (RX FIFO AES DECRYPTION DATA LENGTH REGISTER, 0x2088)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MRFCSLEN	This field represents the length of data to be decrypted by AES engine in RX FIFO.	R/W	0x00
		This field is set by MCU or is automatically set to the length of received packet when ASA field in MRFCCTL register is set to '1'.		

The following describes the registers for data transmission /reception and security.

KEY0 (ENCRYPTION KEY0 REGISTERS, 0x2100~0x210F)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	KEY0	This register is 16-byte key used for AES operation. 0x210F: MSB of KEY value 0x2100: LSB of KEY value	R/W	0x00

RXNONCE (RX NONCE REGISTERS, 0x2110~0x211C)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	RXNONCE	This register is used for decryption operation when receiving packet. It consists of 13-byte such as Source Address(8-byte),Frame Counter(4-byte) and Key Sequence Counter(1-byte). 0x211C : MSB of Source Address 0x2115 : LSB of Source Address 0x2114 : MSB of Frame Counter 0x2111 : LSB of Frame Counter 0x2110 : Key Sequence Counter	R/W	0x00

SAESBUF (STANDALONE AES OPERATION BUFFER REGISTERS, 0x2120~0x212F)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SAESBUF	This register is used for storing data when only processing AES-128 operation by AES engine. After AES-128 operation, the result is stored in this register. 0x212F : MSB of Plaintext and Ciphertext 0x2120 : LSB of Plaintext and Ciphertext	R/W	0x00

KEY1 (ENCRYPTION KEY1 REGISTERS, 0x2130~0x213F)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	KEY1	This register is 16-byte KEY for AES operation. 0x213F : MSB of KEY value 0x2130 : LSB of KEY value	R/W	0x00

TXNONCE (TX NONCE REGISTERS, 0x2140~0x214C)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	TXNONCE	This register is used for encryption operation when transmitting packet. It consists of 13- byte such as Source Address(8-byte),Frame Counter(4-byte) and Key Sequence Counter(1-byte). 0x214C : MSB of Source Address 0x2145 : LSB of Source Address 0x2144 : MSB of Frame Counter 0x2141 : LSB of Frame Counter 0x2140 : Key Sequence Counter	R/W	0x00

The following three addresses are used for network compatible with IEEE802.15.4. EXTADDR is the unique address for the chip or module allocated by IEEE 802.15.4. PANID is the network ID which allows each network to be identified when a network is configured. SHORTADDR is the short address of a device in IEEE802.15.4 network. It allows each device to be identified in same network. SHORTADDR can be changed whenever connecting to the network.

EXTADDR (EXTENDED ADDRESS REGISTERS, 0x2150~0x2157)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	EXTADDR	This register stores 64-bit IEEE address. 0x2157 : MSB of IEEE address 0x2150 : LSB of IEEE address	R/W	0x00

PANID (PANID REGISTERS, 0x2158~0x2159)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	PANID	This register stores 16-bit PAN ID. 0x2159 : PAN ID[15:8] 0x2158 : PAN ID[7:0]	R/W	0x00

SHORTADDR (SHORTADDRESS REGISTERS, 0x215A~0x215B)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	SHORTADDR	This register stores Short address(Network address). 0x215B : Short address[15:8] 0x215A : Short address[7:0]	R/W	0x00

MACSTS (MAC STATUS REGISTER, 0x2180)

Bit Field	Name	Descriptions	R/W	Reset Value
7	ENC/DEC	When this field is set to '1', there is in AES encryption or decryption operation. Only can be read.	R/O	0
6	TX_BUSY	When this field is set to '1', data in MAC FIFO is transmitted to a modem. Only can be read.	R/O	0
5	RX_BUSY	When this field is set to '1', data is transmitted from a modem to MAC FIFO. Only can be read.	R/O	0
4	SAES_DONE	When Standalone AES operation is finished, this field is set to '1'. It is cleared by MCU.	R/W	0

3	DECODE_OK	This field checks the valid data according to the type of received data or address mode. If there is no problem, this field is set to '1'. Only can be read.	R/O	0
2	ENC_DONE	When AES Encryption operation is finished, this field is set to '1'. It is cleared by MCU.	R/W	0
1	DEC_DONE	When AES Decryption operation is finished, this field is set to '1'. It is cleared by MCU.	R/W	0
0	CRC_OK	If there is no problem for checking CRC of received packet, this field is set to '1'.	R/W	0

MACSAES (SAES RUN REGISTER, 0x218E)

Bit Field	Name	Descriptions	R/W	Reset Value
7:1		Reserved	W/O	0
0	SAES	When this field is set to '1', AES operation is done by data in SAESBUF and KEY selected by SA_KEYSEL field in SEC register. This field is cleared automatically.	W/O	0

MACRST (MAC RESET CONTROL REGISTER, 0x2190)

Bit Field	Name	Descriptions	R/W	Reset Value
7	RST_FIFO	When this field is set to '1', MAC FIFO is initialized.	R/W	0
6	RST_TSM	When this field is set to '1', MAC Transmitter State Machine is initialized.	R/W	0
5	RST_RSM	When this field is set to '1', MAC Receiver State Machine is initialized.	R/W	0
4	RST_AES	When this field is set to '1', AES Engine is initialized.	R/W	0
3:0		Reserved		0

MACCRTL (MAC CONTROL REGISTER, 0x2191)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved		0
4	PREVENT_ACK	When this field is set to '1', RX interrupt doesn't occur when the DSN	R/W	0

3	PAN_COORDINATOR	field of received ACK packet is different from the value in MACDSN register during packet reception. When this field is set to '1', function for PAN Coordinator is enabled.	R/W	0			
2	ADR_DECODE	When this field is set to '1', RX interrupt doesn't occur when address information of the received packet is not matched with device itself address.	R/W	1			
1	AUTO_CRC	When this field is set to '1', RX interrupt doesn't occur when CRC of the received packet is not valid.	R/W	1			
0		Should be set to '0'.		0			
MACDS	MACDSN (MAC DSN REGISTER, 0x2192)						

MACDSN (MAC DSN REGISTER, 0x2192)

Bit Field	Name	Descriptions	R/W	Reset Value
7:0	MACDSN	Valid if only PREVENT_ACK in MACCTRL is set to '1'. This register sets the DSN field value of the received ACK packet ,which can occur PHY(RX) interrupt. In other words, if the DSN field of the received ACK packet is not equal to MACDSN, the PHY(RX) interrupt does not occurred.	R/W	0x00

MACSEC (MAC SECURITY REGISTER, 0x2193)

Bit Field	Name	Descriptions	R/W	Reset Value
7	SA_KEYSEL	Select KEY value for Standalone SAES operation. When this field is '1', select KEY1 and when this field is '0', select KEY0.	R/W	0
6	TX_KEYSEL	Select KEY value for AES operation when packet transmission. When this field is '1', select KEY1 and when this field is '0', select KEY0.	R/W	0
5	RX_KEYSEL	Select KEY value for AES operation when packet reception. When this field is '1', select KEY1 and when this	R/W	0

		field is '0', se	elect KEY0.		
4:2	SEC_M	In CBC-MAC operation, it represents the data length used in authentication field as byte unit.		R/W	0
		SEC_M	Authentication Field Length		
		0	Reserved		
		1	4		
		2	6		
		3	8		
		4	10		
		5	12		
		6	14		
		7	16		
1:0	SEC_MODE	Security Mo		R/W	0
		0: No S	-		
			MAC mode		
		2: CTR			
		3: CCM	mode		

TXAL (TX AUXILIARY LENGTH REGISTER, 0x2194)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	R/W	0
6:0	TXAL	This field represents the length used on AES operation for the packet to be transmitted and it has different meaning for each security mode as follows. Security mode: CTR It represents the number of byte between length byte and the data to be encoded or decoded of data in FIFO. Security mode: CBC-MAC It represents the number of byte between length byte and the data to be authenticated. Security mode: CCM It represents the length of data which is used in not encoding or decoding but authentication.	R/W	0x00

RXAL (RX AUXILIARY LENGTH REGISTER, 0x2195)

Bit Field	Name	Descriptions	R/W	Reset Value
7		Reserved	R/W	0
6:0	RXAL	This field represents the length used on AES operation for the received packet and it has different meaning for each security mode as follows. Security mode: CTR It represents the number of byte between length byte and the data to be encoded or decoded of data in FIFO. Security mode: CBC-MAC It represents the number of byte between length byte and the data to be authenticated. Security mode: CCM It represents the length of data which is used in not encoding or decoding	R/W	0x00
		but authentication.		

7.8. PHY

Physical Layer (PHY) stated as a modem block is used as follows;

- With MAC block, the data to be transmitted is digitally modulated and then it is transmitted to the RF block.
- With MAC block, RF signal received via a RF block is digitally demodulated and then it is transmitted to the MAC block.

The modulation starts from fetching the data in TX FIFO. After expending preamble, SFD and length field to the data, a frame, which is compatible to IEEE802.15.4 standard, is generated. This frame is mapped to symbols via Bit-to-Symbol conversion as [Figure20] below. Bit-to-Symbol conversion maps 4 bit to 1 symbol. This symbol spreads via Symbol-to-Chip mapping. Spread symbol is modulated to the quadrature signal of constant envelope via Offset Quadrature Phase Shift Keying(O-QPSK) modulation and Half Sine Filtering.

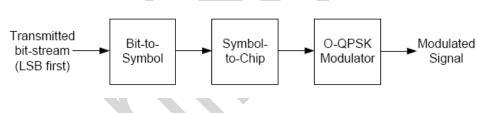


Figure 20. IEEE 802.15.4 Modulation

Symbol-to-Chip mapping is used for spreading the symbol bandwidth. The spreading improves the reception performance. [Figure21] shows the mapping rule of chip sequences corresponding to a symbol.

Symbol	Chip sequence (C ₀ , C ₁ , C ₂ , , C ₃₁)
0	11011001110000110101001000101110
1	111011011001110000110101000010
2	00101110110110011100001101010010
3	00100010111011011001110000110101
4	0101001001011101101100111000011
5	00110101001000101110110110011100
6	11000011010100100010111011011001
7	10011100001101010010001011101101
8	1000110010010]110000001110111011
9	10111000110010010110000001110111
10	01111011100011001001011000000111
11	0111011110111000110010010100000
12	00000111011110111000110010010110
13	0110000011101111011100011001001
14	10010110000001110111101110001100
15	1100100101100000011101110111000

Figure 21. Spreading sequence of 32 chip

[Figure22] shows the quadrature signal modulated.

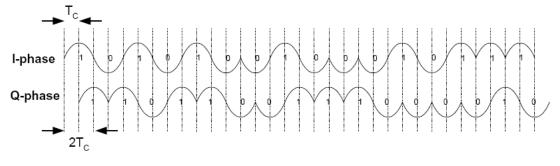


Figure 22. Quadrature modulated finally

Modulated signal is converted to the analog signal by DAC and then it is passed to RF block. The output signal of DAC is fed to Quadrature(I/Q) Up-conversion Mixer via analogue Low Pass Filter(LPF) and the RF signal is amplified at Power Amplifier (PA) and then transmitted at an antenna. When RF signal is received at antenna, it is amplified by LNA(low noise amplifier) of RF block.

After that, it is down-converted to the base-band quadrature signal by Quadrature Downconversion Mixer. After low pass filtering, this signal is amplified via Variable Gain Amplifier(VGA). The amplified analog signal is converted to a digital signal by ADC.

The output signal of ADC is digitally demodulated by a modem block. Digital demodulation process includes Automatic Gain Control(AGC), De-spreading, Symbol Detection, and Timing Synchronization and so on. When a frame delimiter is detected on the demodulated signal, a modem block generates the interrupt which indicates the start of a packet.

The length and the frame body followed by frame delimiter are stored in RX FIFO of MAC. When the last data is stored, an interrupt is generated to indicate the end of packet reception. After a packet reception interrupt occurs, a user can read the data in TX FIFO by software. When a packet is received, a modem block provides Received Signal Strength Indication(RSSI) automatically. RSSI is measured by averaging the power level of received signal for a defined time.

It can be used as a LQI(Link Quality Indicator) to decide the quality of communication channel. RSSI is stored in special register and the stored RSSI value is kept until a new packet is received. After a packet reception interrupt occurs, a user can read the value stored in RSSI register by software. While a packet is not received, a modem block continuously provides RSSI of RF signal at antenna. Measured RSSI is used to decide the communication channel state. Clear Channel Assessment(CCA) operation is based on this communication channel state information. When multiple-user use a channel, simultaneous transmission can cause the collision. CCA is used to prevent it. When a communication channel is busy, a packet transmission is deferred until the channel state goes to idle .

7.8.1. INTERRUPT

A modem block provides the following four interrupts to inform the occurrence of specific event.

• RX End Interrupt (RXEND_INT)

This interrupt informs the completion of a packet reception. When this interrupt is generated, a user can check the received data in TX FIFO.

Also, the quality of transmission channel is checked by reading the register, which stores RSSI of the received packet.

RX Start Interrupt (RXSTART_INT)

This interrupt informs the start of a packet reception. When the packet reception is started, all the reception is processed by hardware. It is recommended that this interrupt is not used.

TX End Interrupt (TXEND_INT)

This interrupt informs the completion of packet transmission. A new packet cannot be transmitted until a packet transmission is completed. When a communication channel is busy, a TX End Interrupt can be delayed until a communication channel goes to idle state and the transmission is completed successfully

Modem Ready Interrupt (MDREADY_INT)

This interrupt informs that the modem block is changed from idle state to ready state by modemon request. The modem block is in the idle state when the supply power is turned on and it should be changed to ready state in order to transmit or receive the packet. This interrupt occurs when RF block is stabilized by modem-on request.

A user can check whether each interrupt described above occurs or not by INTSTS register. INTCON register can be set to disable the desired interrupt

Modem block provides INTIDX register with INTSTS register to check whether an interrupt occurs or not. When the multiple interrupts occur simultaneously, INTSTS register shows all the interrupts occurred. INTIDX register informs whether the interrupt is enabled or not in order based on the priority of the interrupt. When a user reads INTSTS or INTIDX register, all the interrupts are initialized.

7.8.2. REGISTERS

The registers of modem block control or report the state of modem block. The registers ,which influence on transmission performance of modem block, should be set by the values provided from RadioPulse Inc. and should not be modified by a user application program.

[Table7] describes the registers in MG2455. The address of each register is assigned to the data memory area in microcontroller, so a user application program can read and write the register as a general memory.

Address (Hex)	Name	Description	Initial Value
2200	PCMD0	PHY Command0	11111100
2201	PCMD1	PHY Command1	11000111
2202	PLLPD	PLL Power-Down	11100000
2203	PLLPU	PLL Power-Up	11111111
2204	RXRFPD	RF RX Path Power-Down	0000000
2205	RXRFPU	RF RX Path Power-Up	11111111
2206	TXRFPD	RF TX Path Power-Down	11010000
2207	TXRFPU	RF TX Path Power-Up	11111111
220D	TRSWBC	TRSWB Control	0000000
2211	RXFRM1	RX Frame Format1	00000010
2212	SYNCWD	SYNC Word Register	10100111
2213	TDCNF0	Operation Delay Control 0	01001111
2217	TDCNF1	Operation Delay Control 1	01100011

2215	TXFRM1	TX Frame Format1	11110010
2223	AGCCNF3	AGC Configuration3	01111111
2248	CCA0	CCA Control0	11000000
2249	CCA1	CCA Control1	10110010
224A	CCA2	CCA Control2	00000001
224B	CCA3	CCA Control3	11110100
2260	TST	Test Register	1000000
2261	TST1	Test Configuration1	01101100
2262	TST2	Test Configuration2	11111111
2263	TST3	Test Configuration3	00001111
226D	TST13	Test Configuration13	0000000
226E	TST14	Test Configuration14	0100000
2270	PHYSTS0	PHY Status0	1000000
2271	PHYSTS1	PHY Status1	11110000
2272	AGCSTS0	AGC Status0	11111111
2273	AGCSTS1	AGC Status1	11011111
2274	AGCSTS2	AGC Status2	0000000
2275	AGCSTS3	AGC Status3	0000000
2277	INTCON	PHY Interrupt Control	11110000
2278	INTIDX	PHY Interrupt Status and Index	11111100
227E	INTSTS	PHY Interrupt Status	11111111
220D	TRSWC0	TRSW Control 0	0000000
2279	TRSWC1	TRSW Control 1	10010000
2280	PLL0	PLL Frequency Control 0	0000010
2282	PLL1	PLL Frequency Control 1	00000111
2286	PLL2	PLL Frequency Control 2	00111000
2287	PLL3	PLL Frequency Control 3	01000000
228B	PLL4	PLL Frequency Control 4	00100000
2289	PLL5	PLL Frequency Control 5	00101111
228A	PLL6	PLL Frequency Control 6	00010100
22A0	TXPA0	TX PA Control 0	00011000
22A1	TXPA1	TX PA Control 1	11111000

MG2455-F48-D-001

The following describes PHY registers.

PCMD0 (PHY COMMAND0 REGISTER,0x2200)

This register is used to control the operation of a modem block..

Bit Field	Name	Descriptions	R/W	Reset Value
7	MDOFF	Modem-off Request. When this field is set to '0', a modem block status is changed to OFF. In OFF state, RF block is in power-down state and a modem block is in reset state. During this state, MG2455 cannot receive or transmit a packet. For the transmission or the reception of a packet, a modem block needs to be changed to ON state. When a modem block goes to OFF state, this field is set to '1' automatically by hardware.	R/W	1
6	MDON	Modem-on Request. When this field is set to '0', a modem block status is changed to ON. In ON status,RF block or a modem block is in the TX or RX ready . In this state,a modem block controls power-down or power-up for the transmitter or receiver of RF block without a user application program. When a modem block goes to ON status, this field is set to '1' automatically by hardware.	R/W	1
5:4		Reserved		11
3	TXSTP	Packet Transmission Stop Request. When this field is set to'0' while a packet is transmitted, the packet transmisson is stopped. A modem block is changed to RX ready state after defined delay.	R/W	1
2	TXREQ	Packet Transmission Request. When this field is set to '0',a modem block transmits the packet. When a packet transmission is requested, a modem block is changed to the TX ready state after defined delay. At this moment, when only a communication channel is in idle	R/W	1

		state(CCA='1'), a packet is transmitted. When a communication channel is in busy state(CCA='0'),the transmission is deferred until the channel state goes to idle. This field is set to'1' automatically by hardware after completing the transmission. When the packet transmission is completed successfully,TXEND-INT interrupt occurs. When the packet transmission is completed abnormally, the interrupt doesn't occurs and TXREQ field is set to '1'.		
1	TXON	TX Path On.This field is used to enable the modulationcircuit with TXOF field. When TXON field isset to '1', the modulation circuit of a modemblock is always enabled. The following tableshows whether the modulation circuit isenabled or not according to the setting ofTXON and TXOF field. When TXON andTXON and TXOF field. When TXON andTXON and TXOF field. When TXON andTXON are set to '0', a modem blockautomatically enables the modulation circuitduring packet transmission and disables themodulation circuit during packet reception. Itis recommended that both TXON and TXOFfield are set to '0'TXON TXOF Modulation CircuitStatus11Always enabled01Always enabled00Enabled or disabled00Enabled or disabled00Enabled or disabled00Enabled or disabled00Enabled or disabled	R/W	0
0	RXON	RX Path On. This field is used to enable the demodulation circuit with RXOF field. When RXON field is set to '1', the demodulation circuit of a modem block is always enabled. The following table shows whether the demodulation circuit is enabled or not according to the setting of RXON and RXOF field. When RXON and RXOF are set to '0', a modem block automatically enables the	R/W	0

	sion and	circuit during packet disables the demodulation et reception.	
RXON	RXOF	Demodulation Circuit Status	
1	1	Always enabled	
1	0	Always enabled	
0	1	Always disabled	
0	0	Enabled or disabled depending on the control of a modem block	

PCMD1 (PHY COMMAND1 REGISTER,0x2201)

This register is used to control the operation of the modem block.

Bit Field	Name	Descriptions	RW	Reset Value
7:6		Reserved		11
5	DECS	Decryption Start. When DECS field is set to '1', the decryption is processed at MAC block.When the encrypted packet is received, the data stored in RX FIFO should be decrypted. The decrypted data is stored in RX FIFO again.When the decryption is completed, the interrupt occurs at MAC block. The setting of DECS field is not cleared automatically after completing decryption. Therefore, it should be cleared by software.	R/W	0
4	ENCS	Encryption Start When ENCS field is set to '1', the encryption is processed at MAC block. When the transmission of secured packet is needed, the data stored in TX FIFO should be encrypted. The encrypted data is stored in TX FIFO again. When the encryption is completed, the interrupt occurs at MAC block. The setting of ENCS field is not cleared automatically after completing encryption. Therefore, it should	R/W	0

		be cleared to '0' by software.		
3:2		Reserved		01
1	TXOFF	TX Path Off. It is used to disable the modulation circuit with TXON field. When TXON field is set to'0' and TXOF field is set to'1', the modulation circuit of a modem block is always disabled.	R/W	1
0	RXOFF	RX Path Off. It is used to disable the modulation circuit with RXON field. When TXON field is set to'0' and TXOF field is set to'1', the modulation circuit of a modem block is always disabled	R/W	1

PLLPD (PLL POWER-DOWN REGISTER,0x2202)

This register is used to control the power-down of the circuits related to PLL(Phase-locked Loop)

Bit Field	Name	Descriptions			RW	Reset Value
7:5		Reserved				111
4	PLLRSTS	PLL Reset S PLLRSTS fie When PLLR PLLRSTC fie retains reset circuit reset s PLLRSTC an	R/W	0		
		PLLRSTS	PLLRSTC	PLL reset state		
		1	1	Controlled by a modem block		
		1	0	Always in non- reset		
		0	1	Always in reset		
		0	0			
3	VCOBPD	Voltage Cont down.		R/W	0	
		VCOBPD an	d VCOBPDL	J field control the		

		circuit of RF power-dowr disabled and When VCOI VCOBPD fie circuit is in p table shows	block as p state, VC d the curre BPU field is eld is set to power-down VCO buffe	cillator (VCO) Buffer ower-down state.In O Buffer circuit is nt is not consumed. s set to '1' and o '0', VCO Buffer on state.The following er circuit state BPD and VCOBPU		
		VCOBPD	VCOBPL	J VCO Buffer reset state		
		1	1	Controlled by a modem block		
		1	0	Always in power- up state		
		0	1	Always in power- down state		
		0	0	Always in power- up state		
2	VCOPD	Voltage Cor It controls th (VCO) Buffe VCOPU field power-down and the curr VCOPU field field is set to down state. circuit state VCOPU field	ne Voltage er circuit of d as power n state, VC0 rent is not c d is set to ' o'0', VCO c The followin according	R/W	0	
		VCOPD	VCOPU	VCO state		
		1	1			
		1	0			
		0	1	Always power- down state		
		0	0	Always power-up state		

1	DIVPD	Divider Po	wer-down		R/W	0
		It controls with DIVPU power-dow and the cu DIVPU fiel field is set down state	the Divide J field as p vn state, D rrent is no d is set to to'0', Divid c.The follow cuit state a	r circuit of RF block power-down state.In ivider circuit is disabled t consumed.When '1' and then DIVPD der circuit is in power- wing table shows according to the DIVPD		
		DIVPD	DIVPU	Divider state		
		1	1	Controlled by a modem block		
		1	0	Always power-up state.		
		0	1	Always power-down state		
		0	0	Always power-up state		
0	CPPD	RF block v state. In po disabled a When CPF CPPD field power-dow	the Charg vith CPPU ower-dowr nd the cur PU field is d is set to'(vn state.Th state acco	r-down. e Pump(CP) circuit of a field as power-down n state, CP circuit is rent is not consumed. set to '1' and then D', CP circuit is in ne following table shows rding to the CPPD and	R/W	0
		CPPD	CPPU	CP state		
		1	1	Controlled by a modem block		
		1	0	Always power-up state.		
		0	1	Always power-down state		
		0	0	Always power-up state.		

PLLPU (PLL POWER-UP REGISTER,0x2203)

This register is used to control the power-up of circuits related to PLL (Phase-locked Loop)

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved		111
4	PLLRSTC	PLL Reset Clear. PLLRSTC field is used to release the reset PLL circuit. When PLLRSTC field is set to '0', the reset of PLL circuit is released	R/W	1
3	VCOBPU	Voltage Controlled Oscillator Buffer Power-up. It controls the VCO Buffer circuit of RF block as power- up state. In power-up state, VCO Buffer circuit is enabled.When VCOBPU field is set to '0', VCO Buffer circuit is in power-up state.	R/W	1
2	VCOPU	Voltage Controlled Oscillator Power-up. It controls the VCO circuit of RF block with VCOPD field as power-up state. In power-up state, VCO circuit is enabled. When VCOPU field is set to '0', VCO circuit is in a power-up state.	R/W	1
1	DIVPU	Divider Power-up. It controls the Divider circuit of a RF block with DIVPD field as power-up state. In power-up state, Divider circuit is enabled. When DIVPU field is set to '0', Divider circuit is in power-up state.	R/W	1
0	CPPU	Charge Pump Power-up. It controls the CP circuit of RF block with CPPD field as power-up state. In power-up state, CP circuit is enabled. When CPPU field is set to '0', CP circuit is in a power-up state.	R/W	1

RXRFPD (RF RX PATH POWER-DOWN REGISTER,0x2204)

This register is used to power down circuits related to reception in RF block.

Bit Field	Name	Descriptions	R/W	Reset Value
7	LNAPD	Low Noise Amplifier Power-down. It controls the Low Noise Amplifier(LNA) circuit of RF block with LNAPU field as power-down state.In power-down state, LNA circuit is disabled and the current is not consumed. When LNAPU field is set to '1' and then LNAPD field is set to'0', LNA circuit	R/W	0

		•	state accord		following table shows to the LNAPD and		
		LNAPD	LNAPU		LNA state		
		1	1	Co blo	ntrolled by a modem ck		
		1	0	Alw	vays power-up state.		
		0	1	Alw	ays power-down state		
		0	0	Alw	vays power-up state.		
6	RMIXPD	RMIXPU fie state, RX M not consum- then RMIXP power-down	ne RX Mixer Id as power ixer circuit i ed.When R D field is se state. The state acco	r circ r-dov s dis MIX et to follo rding R2 R2	cuit of RF block with wn state. In power-down sabled and the current is PU field is set to '1' and '0', RX Mixer circuit is in owing table shows RX g to the RMIXPD and X Mixer state ontrolled by a modem ock ways power-up state.	R/W	0
		0	1	sta	ways power-down ate ways power-up state		
5	BBAMPPD	It controls the Amplifier (BE BBAMPPU In power-do and the curre field is set to to'0', BBAM following tab	he Base-bar BAMP) circu field as pow wn state, B rent is not c o '1' and the P circuit is i ole shows B	nd A uit of ver-c BAM onsu en Bl in a BBAM	RF block with	R/W	0
		BBAMPPE	BBAMP	PU	BBAMP state		
		1	1		Controlled by a modem block		

		1	0	Alv sta	vays power-up te.		
		0	1	Alv sta	vays power-down te		
		0	0	Alv sta	vays power-up te		
4	RMIXBUFPD	RF RX Mixer	Buffer Pov	ver-dow	n.	R/W	0
		It controls the with RMIXBU power-down disabled and RMIXBUFPU RMIXBUFPD circuit is in a shows RX Mi the RMIXBUF	5				
		RMIXBUFP	D RMIXE	BUFPU	RX Mixer Buffer state		
		1		1	Controlled by a modem block		
		1		0	Always power- up state.		
		0		1	Always power- down state		
		0		0	Always power- up state.		
3		This field is re	eserved an	d should	d be fixed to '0'.	R/W	0
2	RLPFPD	RX Low-pass	Filter Pow	/er-dowr	۱.	R/W	0
		It controls the RF block with In power-dow and the curre When RLPFF field is set to' state.The follo state accordin					
		RLPFPD	RLPFPU	F	RX LPF state		
		1	1	Contro block	lled by a modem		

		1	0	Always power-up state.				
		0	1	Always power-down state.				
		0	0	Always power-up state.				
1	VGAPD	Variable Ga	in Amplifier	Power-down.	R/W	0		
		It controls the of RF block state. In power and the current field is set to VGA circuit table shows VGAPD and	with VGAP wer-down s rent is not c o '1' and the is in power s VGA circuit					
		VGAPD	VGAPU	VGA state				
		1	1	Controlled by a modem block				
		1	0	Always power-up state.				
		0	1	Always power-down state.				
		0	0	Always power-up state.				
0	ADCPD	It controls the field as power ADC circuit consumed. ADCPD field down state.	Analog-to-Digital Converter Power-down. It controls the ADC circuit of RF block with ADCPU field as power-down state. In power-down state, ADC circuit is disabled and the current is not consumed.When ADCPU field is set to '1' and then ADCPD field is set to'0', ADC circuit is in a power- down state. The following table shows ADC circuit state according to the ADCPD and ADCPU field.					
		ADCPD						
		1						
		1	0	Always power-up state.				
		0	1	Always power-down state.				
		0	0	Always power-up state.				

RXRFPU (RF RX PATH POWER-UP REGISTER,0x2205)

This register is used to power up the circuits related to reception in RF block

Bit Field	Name	Descriptions	R/W	Reset Value
7	LNAPU	Low Noise Amplifier Power-up. It controls the LNA circuit of RF block with LNAPD field as power-up state. In power-up state, LNA circuit is disabled. When LNAPU field is set to '0', LNA circuit is in power-up state.	R/W	1
6	RMIXPU	RX Mixer Power-up. It controls the RX Mixer circuit of RF block with RMIXPD field as power-up state. In power-up state, RX Mixer circuit is enabled.When RMIXPU field is set to '0', RX Mixer circuit is in power-up state.	R/W	1
5	BBAMPPU	Base-band Analog Amplifier Power-up. It controls the BBAMP circuit of RF block with BBAMPPD field as power-up state. In power-up state, BBAMP circuit is enabled. When BBAMPPU field is set to '0', BBAMP circuit is in power-up state.	R/W	1
4	RMIXBUFPU	RFRX-path Mixer Buffer Power-up. It controls the RX Mixer Buffer circuit of a RF block with RXMIXBUFPD field as power-up state. In power-up state, RX Mixer Buffer circuit is enabled.When RXMIXBUFPU field is set to '0', RX Mixer Buffer circuit is in a power-up state.	R/W	1
3		This field is reserved and should be fixed to '1'.	R/W	1
2	RLPFPU	RX Low-pass Filter Power-up. It controls the RX LPF circuit of RF block with RLPFPD field as power-up state. In power-up state, RX LPF circuit is enabled. When RLPFPU field is set to '0', RX LPF circuit is in power-up state.	R/W	1
1	VGAPU	Variable Gain Amplifier Power-up. It controls the VGA circuit of RF block with VGAPD field as power-up state. In power-up state, VGA circuit is enabled .When VGAPU field is set to '0', VGA circuit is in a power-up state.	R/W	1
0	ADCPU	Analog-to-Digital Converter Power-up. It controls the ADC circuit of RF block with ADCPD field as power-up state. In power-up state, ADC circuit is enabled.When ADCPU field is set to '0', ADC circuit is in a power-up state.	R/W	1

TXRFPD (RF TX PATH POWER-DOWN REGISTER,0x2206)

This register is used to power down circuits related to transmission in RF block.

Bit Field	Name	Descriptions			RW	Reset Value
7:6		Reserved				11
5	TXUMBUFPD	TX Up-mixer Buffer Power-down. It controls the TX Up-mixer Buffer circuit of RF block with TXUMBUFPU field as power-down state. In power-up state, TX Up-mixer Buffer circuit is disabled and the current is not consumed.When TXUMBUFPU field is set to '1' and then TXUMBUFPD field is set to'0', TX Up- mixer Buffer circuit is in a power-down state. The following table shows TX Up-mixer Buffer circuit state according to the TXUMBUFPD and TXUMBUFPU field setting.			R/W	0
		TXUMBUFPD	TXUMBUFPU	TX Up-mixer Buffer state		
		1	1	Controlled by a modem block		
		1	0	Always power-up state.		
	- (0	1	Always power-down state.		
		0	0	Always power-up state.		
4		Reserved				1
3	PAPD	Power Amplifier Power-down. It controls the Power Amplifier(PA) circuit of RF block with PAPU field as power-down state.In power-down state, PA circuit is disabled and the current is not consumed. When PAPU field is set to '1' and then PAPD field is set to'0', PA circuit is in a power-down state.The following table shows PA circuit state according to			R/W	0

		the PAPD a	and PAPU fi	eld.		
		PAPD	PAPU	PA state		
		1	1	Controlled by a modem block		
		1	0	Always power-up state.		
		0		Always power-down state.		
		0	0	Always power-up state.		
2:1	TXUMPD	It controls t TXUMPU fi down state the current is set to '3' Up-mixer c following ta according t	eld as powe , TX Up-mix is not consu and then T> ircuit is in po ble shows T o the TXUM	wn. ixer circuit of RF block with er-down state.In power- er circuit is disabled and umed. When TXUMPU field (UMPD field is set to'0', TX ower-down state.The TX Up-mixer circuit state IPD and TXUMPU field id '2' are not used.		00
		TXUMPD	ТХИМРИ	TX Up-mixer state		
		3	3	Controlled by a modem block		
		3	0	Always power-up state.		
		0	3	Always power-down state.		
		0	0	Always power-up state.		
		others	others	Reserved		
0	DACPD			erter Power-down.	R/W	0
		Converter(I field as pow DAC circuit consumed. then DACP power-dow	ver-down sta is disabled When DACI D field is se n state. The state accor	Analog of RF block with DACPU ate. In power-down state, and the current is not PU field is set to '1' and t to'0', DAC circuit is in a following table shows ding to the DACPD and		
		DACPD	DACPU	DAC state		

1	1	Controlled by a modem block	
1	0	Always power-up state.	
0	1	Always power-down state.	
0	0	Always power-up state.	

TXRFPU (RF TX PATH POWER-UP REGISTER,0x2207)

This register is used to power up the circuits related to transmission in RF block.

Bit Field	Name	Descriptions	R/W	Reset Value
7:6		Reserved		11
5	TXUMBUFPU	TX Up-mixer Buffer Power-up. It controls the TX Up-mixer Buffer circuit of RF block with TXUMBUFPD field as a power-up state. In a power-up state, TX Up-mixer Buffer circuit is enabled.When TXUMBUFPU field is set to '0', TX Up-mixer Buffer circuit is in a power-up state.	R/W	1
4		Reserved		1
3	PAPU	Power Amplifier Power-up. It controls the PA circuit of RF block with PAPD field as power-up state. In power-up state, PA circuit is enabled.When PAPU field is set to '0', PA circuit is in a power-up state.	R/W	1
2:1	TXUMPU	TX Up-mixer Power-up. It controls the TX Up-mixer circuit of RF block with TXUMPD field as power-up state. In power-up state, TX Up-mixer circuit is enabled.When TXUMPU field is set to '00', TX Up-mixer circuit is in a power-up state.	R/W	1
0	DACPU	Digital-to-Analog Converter Power-up. It controls the TX Up-mixer circuit of RF block with DACPU field as power-up state. In power-up state, TX Up-mixer circuit is enabled.When TXUMPU field is set to '00', TX Up-mixer circuit is in a power-up state.	R/W	1

RXFRM1 (RX FRAME FORMAT1 REGISTER,0x2211)

This register is used to set the frame format of RX Packet.

Bit	Name	Descriptions	R/W	Reset
Field				Value
7:6	RXRATE	Receptable RX Packet Rate. It sets the receptable RX data rate. MG2455 supports 250kbps compatible with IEEE802.15.4 standard and 500kbps or 1Mbps extended data rate provided by RadioPulse Inc.		00
		 0: Support only 250kbps data rate compatible with IEEE802.15.4 standard 1: Support 250kbps and 500kbps data rate 2.3: 250kbps and 1Mbps data rate 		
5:4	TXRATE	Transmission Rate. It sets the transmisson data rate. MG2455 supports 250kbps compatible with IEEE802.15.4 standard and 500kbps or 1Mbps extended data rate provided by RadioPulse Inc. 0: Support only 250kbps data rate compatible with IEEE802.15.4 standard 1: Support 250kbps and 500kbps data rate 2.3: 250kbps and 1Mbps data rate	R/W	00
3:0	RXPRMLNG	RX Preamble Length. It sets preamble length of received packet. MG2455 supports the preamble of 8 symbol length defined in IEEE 802.15.4 standard. At the same time,MG2455 provides the configurable length of preamble. When 'n' value is set in RXPRMLNG field, the length of preamble is set to (n+6)symbol. The length of preamble can be varied from 6 symbol to 21 symbol. The value of this field should be set as same as it of TXPRMLNG field. It is recommended to use default value '2'.	R/W	0010

SYNCWD (SYNCWORD REGISTER,0x2212)

It sets a byte data to be used as SFD(Start-of-Frame Delimiter). IEEE802.15.4 standard uses 2 symbols as SFD. 2 symbols are '0xA7'. First of all, '7' of 2 symbols is transmitted .

TDCNF0 (OPERATION DELAY CONTROL 0 REGISTER, 0x2213)

This register sets the delay to power down RF after TX.

Bit Field	Name	Descriptions	R/W	Reset Value
7:4	TXPDTM	This field sets the delay time between the packet transmission and RF TX-path power-down. The delay time is set in 16µs unit. The minimum and maximum value are 0µs and 240µs respectively.	R/W	0100
3:0		Reserved	R/W	1111

TDCNF1 (OPERATION DELAY CONTROL 1 REGISTER, 0x2217)

This register sets delay for switching TX/RX.

Bit Field	Name	Descriptions	R/W	Reset Value
7:4	TXRXTM	This field sets the delay time of the state transition from TX to RX. The delay time is set in16 μ s unit. The minimum and maximum value are 0 μ s and 240 μ s respectively.	R/W	0110
3:0	RXTXTM	This field sets the delay time of the state transition from RX to TX. The delay time is set in16µs unit. The minimum and maximum value are 0µs and 240µs respectively.	R/W	0011

TXFRM1 (TX FRAME FORMAT1 REGISTER,0x2215)

This register is used to set the frame format of TX packet.

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved		1111
3:0	TXPRMLNG	TX Packet Preamble Length. It sets preamble length of transmission packet.When 'N' value is set in TXPRMLNG field, the length of preamble is set to (N+6)symbol. The length of preamble can be varied from 6 symbol to 21 symbol. The value of this field should be set as same as it of RXPRMLNG field. It is recommended to use default value '2'.	R/W	0010

AGCCNF3 (AGC CONFIGURATION3 REGISTER,0x2223)

This register sets AGC operation environment.

Bit Field	Name	Descriptions		R/W	Reset Value
7:5		Reserved			111
4:3	RXEAWS	RX Energy Accumulator AGC calculates the aver signal energy for the def RSSI. RXEAWS field is u time.	age of the received ined time for measuring	R/W	
2:0		Reserved			111

CCA0 (CCA CONTROL CONFIGURATION0 REGISTER,0x2248)

This register is used to set CCA operation environment.

Bit	Name	Descriptions		R/W	Reset
Field					Value
7		Reserved			1
6:4	CCAAWS	When CCA uses energy the averaging duration o CCAAWS 0 1 2 3 others	detection method, it sets f received signal energy. Average Calculation Duration 1µs 2µs 4µs 8µs 16µs	R/W	100
3	CCAFIX	CCA Indication Lock-up. It fixes the communication channel state to idle. A communication channel state is determined by CCA circuit in MG2455. When a communication channel state is busy, a packet is not transmitted. This field allows packet transmission regardless of the channel state. When this field is set to '1', the communication channel is always in idle state.			0

2		Reserved			1
1:0	CCAMD	CCA Indication Mode This field sets the method to determine the communication channel state. The following describes the three methods to			00
		detect the communicatio			
		ED (Energy Detection): ⁻ the communication chan the energy of received s defined level.			
		CD (Carrier Detection): T the communication chan IEEE802.15.4 carrier is c			
		FD (Frame Detection): T the communication chan the normal IEEE802.15.4			
		CCAMD Method			
		0 ED			
		2 FD 3 reserved			

CCA1 (CCA CONTROL CONFIGURATION1 REGISTER,0x2249)

R/W. CCA Decision Threshold.

This register defines threshold of energy level to determine a channel state as busy. This register is used only when CCA methods based on energy detection are used. CCATHRS is 2's complement integer and stores the threshold in dBm. The default value of CCATHRS register is 0xB2 and corresponds to '-78dBm'.

CCA2 (CCA CONTROL CONFIGURATION2 REGISTER)

R/W. Energy Calculation Offset(ENRGOFST) MG2455 refers the gain of RF block and calculates the energy level of the received signal as the following equation.

Energy Level(dBm) = CCA2 – RF_GAIN

As the equation described above, CCA2 register compensates the offset of calculated energy level for the received signal. A user sets the difference between the energy level calculated on the developed system and the real energy level of the received signal to CCA2 register.

CCA3 (CCA CONTROL CONFIGURATION3 REGISTER,0x224B)

The minor change of energy level might cause the uncertainty of determined channel state when a communication channel state is estimated using the threshold of CCA1 register. To prevent it, MG2455 adjusts hysteresis when the communication channel is changed from a busy state to a idle state. CCA3 register is used to set the hysteresis.

Bit Field	Name	Descriptions	RW	Reset Value
7:4		X \ (1111
3:0	CCAHYST	CCA Hysteresis Level After the communication channel is determined as a busy state, the communication channel is determined as a idle state only when the calculated energy level is decreased more than the level defined in CCAHYST field. CCAHYST field stores 2's complement integer and the unit is dB.	R/W	0100

TST0 (TEST CONFIGURATION0 REGISTER,0x2260)

This register is used to control the test of a modem and RF block.

Bit Field	Name	Descriptions	RW	Reset Value
7	TSTEN	Test Enable This register is used to change MG2455 to a test mode. When TSTEN field is set to '0', a modem block controls RF block according to the test mode which is set by STAMD and TSTMD field. TSTEN field should be set after setting the registers that are required to set up a test mode. In order to set a new test mode, TSTEN field should be set to '1' before setting a new test mode. After that, TESTEN field should be set to '0'.	R/W	1
6:5	STAMD	Station Mode. This field sets MG2455 to a transmitter during a test mode. 1: Set as a transmitter	R/W	00

		2: Set as a receiver 3: Set as a transceiver		
4:0	TSTMD	Test Mode. This field sets a test mode. Refer to the [Table8] for the various modes according to the TSTMD field.	R/W	00000

Mode	STAMD	· · · · ·	TISTN	4D		Operation	
Mode	[1:0] [4] [3:2]	[1]	[g]	-Akgenol			
1	01	0	00	0	0	l=cos, Q=sin single-tone generation	
	01	0	01	0	0	I=81180, Q=sin single-tone generation	
	01	0	10	0	0	l=cos, Q=81180 signel-tone generation	
Singletone	01	0	11	0	0	l=8h80, Q=8h80	
Generation	01	1	00	0	0	l=cos, Q=cos single-tone generation	
for RF Test	01	1	01	0	0	l=8h80, Q=cos single-tone generation	
	01	1	10	0	0	l=cos, Q=8h80 signel-tone generation	
	01	1	ा।	0	0	l=8h80, Q=8h80	
		с		0	0	No-operation	
Modulated Canier	01	х	хх	1	0	Continous 802.15.4 Modulated Signal	
Generation for RF Test		thers		1	0	No-operation	

Table 8. Test Mode Setting

TST1 (TEST CONFIGURATION1 REGISTER,0x2261)

This register defines the fixed symbol to be modulated for generating a test packet.

TST1 register sets two fixed symbols.

Bit Field	Name	Descriptions	RW	Reset Value
7:4	TSTSYML	Test Symbol, Low Nibble. This field sets the symbol to be transmitted first in fixed symbols.	R/W	0110
3:0	TSTSYMH	Test Symbol, High Nibble. This field sets the symbol to be transmitted later in fixed symbols.	R/W	1100

TST2 (TEST CONFIGURATION2 REGISTER,0x2262)

This register sets the inter-packet time interval when the test mode transmits the modulated packet of a random data. The inter-packet time interval is needed for setting-up EVM measurement.

Bit Field	Name	Descriptions	RW	Reset Value
7:3	IFS	Inter-frame Space. Sets the number of the symbol corresponding to the inter-packet time interval in IFS field. The duration of 1 symbol is 16µs. Therefore, if IFS is set to 'N', inter-packet time interval is set to (16*N) µs. The defined value of IFS field is valid only when the TSTMD field is set to '23'.	R/W	11111
2:0		Reserved		111

TST3 (TEST CONFIGURATION3 REGISTER,0x2263)

R/W.

This register is used to support the generation of a random symbol for the modulation in a test mode. The RNG generates the random number by CRC-16. TST3 register stores the seed for RNG circuit. Any number except '0' can be used as the seed for RNG circuit.

TST13 (TEST CONFIGURATION13 REGISTER,0x226D)

R/W.

This register sets the length of transmitting packet in a test mode. The length of packet can be set from 1 byte to 127 byte and the duration of each packet is 256µs or 4,256µs.

TST14 (TEST CONFIGURATION14 REGISTER,0x226E)

R/W.

This register sets the frequency of single-tone in a test mode for transmitting single-tone. TST14 register can set from a 1/4 frequency of DAC operating clock to a 1/256 frequency of DAC operating clock. This single-tone signal can be used to test RF block characteristics. Cosine and sine signal can be selectively assigned to I-phase or Q-phase of RF block.

The frequency of single-tone is defined as following formula.

Frequency =
$$\frac{f_{DAC} \cdot CFRQ}{1024} Hz$$

PHYSTS0 (PHY STATUS0 REGISTER,0x2270)

This register is used to monitor or control the state of a modulation block or demodulation block in a modem block.

Bit	Name	Descriptions	R/W	Reset
-----	------	--------------	-----	-------

Field					Value
7	RXSTSF	the defined stand RXSTS field an of the demodu	the state of the demodulation block to ate. When writing a desired state to nd setting '0' to RXSTSF field, the state ulation block is fixed to the recorded e of the demodulation block is retained	R/W	1
6:4	RXSTS	RX Block Status This field show a modem bloc state of the de state to be chan However, the s changed as a In order to be c field should be The state in R recorded state state of demod recorded state.	s. s the state of the demodulation block in ck. RXSTS field can read the current modulation block. This field stores the nged. state of the demodulation block is not new state is only recorded to this field. changed to the recorded state, RXSTSF set to '0'. RXSTS field can be different from the because RXSTS shows the current ulation block which is updated from the	R/W	000
		RXSTS='101'	offset of the carrier frequency. RX_SYMD1 In RX_SYMD1 state, the demodulation block is in the first stage of symbol		

			1	1 1
			detection(SYMD)	
			During the first stage, the demodulation	
			block waits for the received signal which	
		RXSTS='110'	is adequate for SYMD.	
		RXS15=110	RX_SYMD2	
			In RX_SYMD2 state, the demodulation block is in the second stage of the	
			SYMD. During the second stage, the	
			demodulation block detects symbol from	
			the received signal.	
		RXSTS='111'	RX PKTEND	
			In RX PKTEND state, the demodulation	
			block ends the successful packet	
			reception.	
3:0	TXSTS	TX Block Status	3.	R/W 0000
		This field show	s the state of the modulation block in	
		the modem blo	ock. TXSTS field can read the current	
		state of the m	odulation block. This field stores the	
		state to be c	hanged. However, the state of the	
		modulation bloc	ck is not changed as a new state is only	
		recorded to this	s field. In order to be changed to the	
		recorded state,	TXSTSF field should be set to '0'. The	
		state in TXSTS	field can be different from the recorded	
		state because	TXSTS shows the current state of	
		modulation bloc	ck. The following table shows the state	
		in TXSTS.		
		TXSTS='0000'	TX_IDLE	
			In TX_IDLE state, the modulation block	
			cannot transmit a packet.	
		TXSTS='0001'	TX_WAIT1	
			In TX_WAIT1 state, the modulation	
			block waits the TX FIFO to be ready	
			before the packet transmission.	
		TXSTS='0010'	TX_WAIT2	
			In TX_WAIT2 state, the modulation	
			block waits the TX FIFO to be ready	
			before the packet transmission	
		TXSTS='0011'	ТХ_СНК	
			In TX_WAIT1 state, the modulation	
			block checks the validity of the	
			transmission packet length.	
		TXSTS='0100'	TX_PRM	

		In TX_PRM state, the modulation block	
		transmits the SFD	
	TXSTS='0101'	In TX_SFD state, the modulation block	
		transmits the SFD.	
	TXSTS='0110'	TX_TAIL	
	TXSTS='0111'	In TX_LNG state, the modulation block	
		transmits the length.	
	TXSTS='1000'	TX_BDY	
		In TX_BDY state, the modulation block	
		transmits the frame body of	
		transmission packet.	
	TXSTS='1001'	TX_TAIL	
		In TX_TAIL state, the modulation block	
		transmits the tail data of frame body.	
	TXSTS='1010'	TX_CONT	
		In TX_CONT, the modulation block	
		transmits the modulated signal for a test	
		mode.	
	TXSTS='111'	Reserved	

PHYSTS1 (PHY STATUS1 REGISTER, 0x2271)

This register is used to monitor or control the state of a modem block.

Bit Field	Name	Descriptions	R/W	Reset Value
7	TXSTSF	TX Status Lock-up. This field fixes the state of the modulation block to the defined state. When recording the desired state to TXSTS field and setting '0' to TXSTSF field, the state of the modulation block is fixed to the recorded state. The state of the modulation block is retained until TXSTSF is set to '1'.	R/W	1
6:5		Reserved	R/W	11
4	MDSTSF	Modem Status Lock-up. This field fixes the state of the modem block to the defined state. When recording the desired state to MDSTS field and setting '0' to MDSTSF field, the state of the modem block is fixed to the	R/W	1

		recorded state. The state of the modem block is retained until MDSTSF is set to '1'.		
3:0	MDSTS	Modem State. This field shows the state of the modem block. MDSTS field can read the current state of the modem block. When a new state is recorded in this field, it is stored. The state of the modem block is not changed when only recording a state in MDSTS field. In order to be changed to the recorded state, MDSTSU or MDSTSF field should be set to '0'.The state in MDSTS field can be different from the recorded state because MDSTS shows the current state of the modem block. [Table 9] shows the state in MDSTS.	R/W	0000

Table 9. MDSTS Field

MD_IDLE
In MD_IDLE state, the modem block is in idle state. The modem block cannot
transmit or receive a packet. The modem block consumes the minimum current.
The transmission or reception of a packet is available only when the modem block
is in a modem ready state.
MD_DCCAL
In MD_DCCAL state, it does the calibration of DC cancellation block.
After calibration, PLL is powered-up PLL automatically.
MD_WAITON
In MD_WAITON state, the modem block is in midterm to a modem ready state and
waits the stabilization of the supply power to PCC circuit
MD_WAITLCK
In MD_WAITLCK state, PLL is waiting to be locked.
MD_RDY
In MD_RDY state, the modem block is in already state. The supply power to PLL
circuit is stabilized and the PLL is locked.
MD_TXCAL
In MD_TXCAL state, the modem block is waiting for the transmitter of the RF block
to be stabilized before the packet transmission. After the stabilization, the state of
the modem block is changed to MD_TXPKT state.
MD_TXPKT
In MD_TXPKT state, the modem block transmits a packet.
MD_RXCAL
In MD_RXCAL state, the modem block is waiting for the receiver of the RF block to
be stabilized before the packet reception. After the stabilization, the state of the
modem block is changed to MD_RXON state.
MD_RXON
In MD_RXON state, the modem block is waiting for the reception of a packet.
During this state, the modem block continuously monitors the reception of a
packet.
MD_RXPKT
In MD_RXPKT state, the modem block performs the demodulation of the received
packet. After the completion of the packet reception, the state of the modem block
is changed to MD_RXON state.

MDSTS='1010'	Reserved
MDSTS='1011'	MD_RFTST
	In MD_RFTST state, the modem block works in a selected test mode.
MDSTS='1100'	MD_IFS
	In MD_IFS state, the modem block is ready for transmitting the next packet after
	the completion of a packet transmission in a test mode.
MDSTS='1101'	MD_CLR
	In MD_CLR state, the modem block ends the packet transmission and sets
	TXREQ field to '1' automatically. The state of the modem block is changed to
	MD_RXON state when TXREQ field is set to '1'.
MDSTS='1110'	Reserved
MDSTS='1111'	

AGCSTS0 (AGC STATUS0 REGISTER,0x2272)

This register is used to monitor and control the gain of LNA or RX Mixer in RF block.

Bit Field	Name	Descriptions	R/W	Reset Value
7	MGF	Mixer Gain Lock-up. This field sets the gain of RX Mixer as the fixed value recorded in MG field. When the MGF field is set to '0', RX Mixer gain is changed according to the value recorded in MG field. Only when MGF field is set as '1', RX Mixer gain can be adjusted by AGC block.	R/W	1
6	LGF	LNA Gain Lock-up. This field sets the gain of LNA as the fixed value recorded in LG field. When the LGF field is set to '0', LNA gain is changed according to the value recorded in LG field. Only when LGF field is set as '1', LNA gain can be adjusted by AGC block.	R/W	1
5	MG	RX Mixer Gain. This field is used to monitor the RX Mixer gain which is set by AGC block. The RX Mixer gain with MG='1' is 25 dB higher than it with MG='0'. When the value of MGF field is '0', MG field is used to set the gain of RX Mixer.	R/W	1
4	LG	LNA Gain. This field is used to monitor the LNA gain which is set by AGC block. The LNA gain with LG='1' is 25 dB higher than it with LG='0'. When the value of LGF field is '0', LG field is used to set the gain of LNA.	R/W	1
3:0		Reserved		1111

AGCSTS1 (AGC STATUS1 REGISTER,0x2273)

This registers is used to monitor and control the gain of VGA in RF block.

Bit Field	Name	Descriptions	R/W	Reset Value
7	VGF	VGA Gain Lock-up. This field sets the gain of VGA as the fixed value recorded in VG field. When the VGF field is set to '0', VGA gain is changed according to the value recorded in VG field. Only when VGF field is set as '1', VGA gain can be adjusted by AGC block.	R/W	1
6:1	VG	VGA Gain. This field is used to monitor the VGA gain which is set by AGC block. The VGA consists of three stages and the gain of the VGA can be controlled from 0dB to 63dB with 1 dB resolution. When the value of VGF field is '0', VG field is used to set the gain of VGA. VG[1:0] Stage 1 gain(0 ~ 3dB) '00': 0dB '01': 1dB '10': 2dB '11': 3dB VG[3:2] Stage 2 amplifier gain(0 ~ 12dB) '00': 0dB '01': 4dB '10': 8dB '11': 12dB VG[5:4] Stage 3 amplifier gain(0 ~ 32dB) '00': 0dB '01': 16dB '10': 32dB '11': reserved	R/W	101111
0		reserved		1

AGCSTS2 (AGC STATUS2 REGISTER,0x2274)

R/W.

This register stores the average energy level of the received RF signal at antenna. The stored energy level is the average of the received signal energy which is measured for the time interval defined in RXEAWS field. The indicated value at AGCSTS2 register is a 2's complement integer in dBm.

AGCSTS3 (AGC STATUS3 REGISTER,0x2275)

R/W.

This register stores the average energy level of the received packet. AGCSTS2 register indicates the average of received signal's energy level with the defined time interval. However AGCSTS3 register shows only the energy level of the received packet. The value in AGCSTS3 register is retained until another packet is received.

INTCON (PHY INTERRUPT CONTROL REGISTER,0x2277)

This register is used to mask off the interrupt of a modem block.

Bit Field	Name	Descriptions	R/W	Reset Value
7:4		Reserved		111
3	RXENDMSK	RXEND_INT Interrupt Mask. This field masks RXEND_INT off. When RXENDMSK field is set to '0', RXEND_INT interrupt is not generated. This interrupt should be used to support the successful packet reception.	R/W	0
2	RXSTMSK	RXSTART_INT Interrupt Mask. This field masks RXEND_START off. When RXSTMSK field is set to '0', RXSTART_INT interrupt is not generated. RXSTART_INT is not a mandatory interrupt. It is recommended to mask off RXSTART_INT interrupt when the rapid packet reception is needed.	R/W	0
1	TXENDMSK	TXEND_INT Interrupt Mask. This field masks TXEND_INT off. When TXENDMSK field is set to '0', TXEND_INT interrupt is not generated. This interrupt should be used to support the successful packet transmission.	R/W	0
0	MRDYMSK	MDREADY_INT Interrupt Mask. This field masks MDRDY_INT off. When MRDYMSK field is set to '0', MDRDY_INT interrupt is not generated. This interrupt should be used to check whether a modem block is ready for transmission /reception or not.	R/W	0

INTIDX (PHY INTERRUPT STATUS AND INDEX REGISTER,0x2278)

This register is used to indicate the kinds of the interrupt when it occurs

Bit Field	Name	Descriptions	R/W	Reset Value
7:5		Reserved		111
4	FRMDX	Reception of Extended Transfer Rate Packet. This field indicates the data rate of the received packet when the RXEND_INT interrupt occurs. When FRMDX field is set to '0' and RXRATE field in RXFRM1 register is set to '1', it indicates the packet reception of 500kbps data rate. When RXRATE field is set to '2', it indicates the packet reception of 1Mbps data rate.	R/W	1
3	ALLINTCLR	All Interrupt Clear. This field disables all interrupts when they occurs. This field clears all interrupts occurred. When multiple interrupts occur at the same time, the modem block stores them in a buffer and processes them in order. When INTIDX field is read, the occurred interrupts are cleared in order. When ALLINTCLR field is set to '0', all the interrupts in buffer are cleared at the same time.	R/W	1
2		Reserved		1
1:0	INTIDX	Interrupt Table Index. This register shows the kinds of the interrupt when an interrupt occurs. This field shows the kinds of interrupt in order if multiple interrupts occur at the same time. The INTSTS field in INTSTS register should be used for looking through the kinds of all interrupts occurred. After reading INTIDX field, occurred interrupts are cleared automatically.	R/W	00
		INTIDXInterrupt0MDREADY_INT interrupt1TXEND_INT interrupt2RXSTART_INT interrupt3RXEND_INT interrupt		

INTSTS (PHY INTERRUPT STATUS REGISTER, 0x227E)

This register is used to indicate the kinds of the interrupt when the multiple interrupts occur.

Bit	Name	Descriptions	R/W	Reset Value
7:5		Reserved		111
4	FRMDX	Reception of Extended Transfer Rate Packet. This field is equal to FRMDX field in INTIDX register.	R/W	1
3:0	INTSTS	Multiple Interrupt Status. This register concurrently shows the interrupt status when multiple interrupts occur. Each bit in INTSTS field represents whether the specific interrupt occurs or not as shown below. INTSTS[0] : MDREADY_INT interrupt INTSTS[1] : TXEND_INT interrupt INTSTS[2] : RXSTART_INT interrupt INTSTS[3] : RXEND_INT interrupt When a interrupt occurs, INTSTS field corresponding to the each interrupt is set to '0'. To clear the occurred interrupt, the bit corresponding to the occurred interrupt should be set to '1' by software. INTSTS[1] : TXEND_INT interrupt INTSTS[2] : RXSTART_INT interrupt INTSTS[3] : RXEND_INT interrupt INTSTS[3] : RXEND_INT interrupt Each bit in INSTS field is set to '0' when the assigned interrupt occurs. To clear the occurred interrupt, the bit	R/W	1111
		corresponding to the occurred interrupt should be set to '1' by software.		

TRSWC0 (TX/RX SWITCH CONTROL0 REGISTER,0x220D)

R/W.

This register is used to set two GPIO pins (P1.6,P1.7) as TX/RX switching control pins .

P1.6 and P1.7 can be used to control TX/RX switching when TRSWC0 register is set to '0x50'. TRSWC1 register should be set with TRSWC0. When TRSWC0 is set to '0x00', two pins are used as GPIO pins.

TRSWC1 (TX/RX SWITCH CONTROL0 REGISTER, 0x2279)

R/W.

This register is used to output TRSW and TRSWB signal by P1.6 and P1.7. TRSW signal remains as a logic '1' during packet transmission and as a logic '0' during packet reception. TRSWB, the complementary signal of TRSW, remains as a logic '0' during packet transmission and as a logic '1' during packet reception. TRSWC1 register should be set to '0x00' to output TRSW and TRSWB signal.

PLL0/1/2/3/4 (PLL CONTROL 0/1/2/3/4 REGISTER, 0x2280, 0x2282, 0x2286, 0x2287, 0x228B)

R/W.

These registers are used to set the locking frequency of PLL circuit. When a 16MHz crystal is used for clock generation, PLL0, PLL1, PLL2, PLL3, and PLL4 registers should be set as shown in a following table to lock PLL. The locking frequency can be changed by controlling PLL3 register.

The locked frequencies of 11, 12, 13, 14, 18, 19, 20, 21, 22, and 26 channel are increased by 50KHz whenever PLL3 register is increased by '1'. The locked frequencies of 11, 12, 13, 14, 18, 19, 20, 21, 22, and 26 channel is decreased by 50KHz whenever PLL3 register is increased by '1'.

Channel	PLL0	PLL1	PLL2	PLL3	PLL4
	(0x2280)	(0x2282)	(0x2286)	(0x2287)	(0x228B)
11(2.405GHz)	00000010	00000111	00000110	0100000	00110010
12(2.410GHz)	00000010	00000111	00001100	1000000	00110010
13(2.415GHz)	00000010	00000111	00010010	11000000	00110010
14(2.420GHz)	00000010	00000111	00011001	00000000	00110010
15(2.425GHz)	00000011	00000111	10111011	0100000	00110010
16(2.430GHz)	00000011	00000111	11000001	1000000	00110010
17(2.435GHz)	00000011	00000111	11000111	11000000	00110010
18(2.440GHz)	00000010	00000111	00110010	00000000	00110010
19(2.445GHz)	00000010	00000111	00111000	0100000	00110010
20(2.450GHz)	00000010	00000111	00111110	1000000	00110010
21(2.455GHz)	00000010	00000111	01000100	11000000	00110010
22(2.460GHz)	00000010	00000111	01001011	00000000	00110010
23(2.465GHz)	00000011	00000111	11101101	01000000	00110010
24(2.470GHz)	00000011	00000111	11110011	1000000	00110010
25(2.475GHz)	00000011	00000111	11111001	11000000	00110010
26(2.480GHz)	00000011	00000111	0000000	0000000	00111011

PLL5 (PLL CONTROL 5 REGISTER, 0x2289)

This register is used to process a automatic frequency calibration(AFC) when the locking frequency of PLL is changed.

Bit	Name	Descriptions	R/W	Reset Value
7	AFCSTART	Automatic Frequency Calibration Start. This field is used to request the start of AFC. AFC is processed when the AFCSTART is set to '1'. After the AFC process, AFCSTART field is automatically cleared to '0'.	R/W	0
6	AFCEN	Automatic Frequency Calibration Enable. This field is used to enable the AFC process and should be set to '1' to run AFC.	R/W	0
5:0		Reserved		111111

PLL6 (PLL CONTROL 6 REGISTER, 0x228A)

This register is used to check whether PLL is locked or not.

Bit	Name	Descriptions	R/W	Reset Value
7		Reserved	R/W	0
6	PLLOCK	This field shows the locking status of PLL circuit. When this field is set to '1', PLL circuit is in locked state. When this field is set to '0', PLL circuit is not locked.	R/W	0
5:0		Reserved		111111

In order to change channel setting, PLL0, PLL1, PLL2, PLL3, PLL4, and PLL5 register need to be controlled by following procedure.

- 1) Change RF RX-path to power-down state by setting RXRFPD register to 00000000.
- 2) Change RF TX-path to power-down state by setting TXRFPD register to 11010000.
- 3) Set the value of PLL0, PLL1, PLL2, PLL3 and PLL4 registers.
- 4) Start AFC by setting 11101111 to PLL5 register.
- 5) Retain Stand-by state until setting PLLLOCK in PLL6 register to '1'.
- 6) Change RF TX-path from power-down state to normal state by setting TXRFPD register to 11111111 after setting PLLLOCK to '1'.
- 7) Change RF RX-path from power-down state to normal state by setting RXRFPD register to 11111111.

TXPA0/1/2 (POWER AMPLIFIER OUTPUT CONTROL REGISTER, 0x22A0/1/2) R/W.

This register determines the current of transistor to output from PA. For the linear output level, TXPA0, TXPA1 and TXPA2 should be adjusted as the following table.

TX Output Power Level(dBm)	TXPA0(0xA0)	TXPA1(0xA1)	TXPA2(0xA2)
8	10011111	11111111	01101111
7	10011111	11110101	01101111
6	10011101	11110000	01101111
5	10011111	11101101	01101111
4	10010101	11101101	01101111
3	00011111	11110011	01101111
2	00011111	11101100	01101111
1	00011110	11101010	01101111
0	00011100	11101001	01101111
-5	00011110	11100011	01101111
-7	00011000	11100011	01101111
-10	00011000	11100010	01101111
-15	00010011	11100010	01101111
-20	00010010	11100010	01101110

7.9. IN-SYSTEM PROGRAMMING(ISP)

In-system programming(ISP) function enables a user to download an application program to the internal flash memory. When Power-on, MG2455 checks the value of MS[2:0] pin. When MS[2] pin value is '1' and MS[1:0] value is '0', ISP mode is selected. The following procedure is to use ISP function.

- 1. In MS[2:0] pin, MS[2] should be set to'1'. MS[1] and MS[0] should be set to '0'.
- 2. Make RS-232 connection with PC by using Serialport1.
 - The configuration is 8-bit, no parity, 1 stop bit and 115200 baud rate.
- 3. Power up a device.
- 4. Execute ISP program.(It is included in Development Kit)
- 5. Load an application program in Intel HEX format.
- 6. Download.

When the procedure above is finished, an application program is stored in the internal flash memory. To execute the application program, a device should be reset after setting MS[2:0] pin to '0'

After reset, the application program in the internal flash memory is executed by the internal MCU.

7.10. MG2455 INSTRUCTION SET SUMMARY

MNEMONIC	DESCRIPTION	BYTE	CYCL E
ARITHMETIC OPERATIONS			
ADD A,Rn	Add register to Accumulator	1	1
ADD A, direct	Add direct byte to Accumulator	2	1
ADD A,@Ri	Add indirect RAM to Accumulator	1	1
ADD A,#data	Add immediate data to Accumulator	2	1
ADDC A,Rn	Add register to Accumulator with Carry	1	1
ADDC A,direct	Add direct byte to Accumulator with Carry	2	1
ADDC A,@Ri	Add indirect RAM to Accumulator with Carry	1	1
ADDC A,#data	Add immediate data to Accumulator with Carry	2	1
SUBB A,Rn	Subtract register to Accumulator with borrow	1	1
SUBB A,direct	Subtract direct byte to Accumulator with borrow	2	1
SUBB A,@Ri	Subtract indirect RAM to Accumulator with borrow	1	1
SUBB A,#data	Subtract immediate data to Accumulator with borrow	2	1
INC A	Increment Accumulator	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment direct RAM	1	1
DEC A	Decrement Accumulator	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement direct RAM	1	1
INC DPTR	Increment Data Pointer	1	3
MUL AB	Multiply A & B	1	3
DIV AB	Divide A by B	1	10
DA A	Decimal Adjust Accumulator	1	1
LOGICAL OPERATIONS			
ANL A,Rn	AND register to Accumulator	1	1
ANL A, direct	AND direct byte to Accumulator	2	2
ANL A,@Ri	AND indirect RAM to Accumulator	1	1
ANL A,#data	AND immediate data to Accumulator	2	1
ANL direct,A	AND Accumulator to direct byte	2	2
ANL direct,#data	AND immediate data to direct byte	3	2
ORL A,Rn	OR register to Accumulator	1	1
ORL A, direct	OR direct byte to Accumulator	2	2
ORL A,@Ri	OR indirect RAM to Accumulator	1	1
ORL A,#data	OR immediate data to Accumulator	2	1
ORL direct,A	OR Accumulator to direct byte	2	2
ORL direct,#data	OR immediate data to direct byte	3	2
XRL A,Rn	Exclusive-OR register to Accumulator	1	1
XRL A,direct	Exclusive-OR direct byte to Accumulator	2	2
XRL A,@Ri	Exclusive-OR indirect RAM to Accumulator	1	1
XRL A,#data	Exclusive-OR immediate data to Accumulator	2	1
XRL direct,A	Exclusive-OR Accumulator to direct byte	2	2

Table 10. Instruction Set Summary

XRL direct,#data	Exclusive-OR immediate data to direct byte	3	2
CLR A	Clear Accumulator	1	1
CPL A	Complement Accumulator	1	1
RL A	Rotate Accumulator Left	1	1
RLC A	Rotate Accumulator Left through the Carry	1	1
RR A	Rotate Accumulator Right	1	1
RRC A	Rotate Accumulator Right through the Carry	1	1
SWAP A	Swap nibbles within the Accumulator	1	1
DATA TRANSFER		· ·	
MOV A,Rn	Move register to Accumulator	1	1
MOV A, direct	Move direct byte to Accumulator	2	1
MOV A,@Ri	Move indirect RAM to Accumulator	1	1
MOV A,#data	Move immediate data to Accumulator	2	3
MOV Rn,A	Move Accumulator to register	1	3
MOV Rn,direct	Move direct byte to register	2	2
·	Move immediate data to register	2	2
MOV Rn,#data MOV direct.A	Move Accumulator to direct byte	2	2
MOV direct,A	Move register to direct byte	2	2
MOV direct, RI		3	3
,	Move direct byte to direct	2	2
MOV direct,@Ri	Move indirect RAM to direct byte		
MOV direct,#data	Move immediate data to direct byte	3	2
MOV @Ri,A	Move Accumulator to indirect RAM	1	2
MOV @RI,direct	Move direct byte to indirect RAM	2	3
MOV @Ri,#data	Move immediate data to indirect RAM	2	2
MOV DPTR,#data16	Load Data Pointer with a 16-bit constant	3	3
MOVC A,@A+DPTR	Move Code byte relative to DPTR to Accumulator	1	2
MOVC A,@A+PC	Move Code byte relative to PC to Accumulator	1	1
MOVX A,@Ri	Move External RAM(8-bit addr) to Accumulator	1	1
MOVX A,@DPTR	Move External RAM(16-bit addr) to Accumulator	1	1
MOVX @Ri,A	Move Accumulator to External RAM(8-bit addr)	1	2
MOVX @DPTR,A	Move Accumulator to External RAM(16-bit addr)	1	1
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A,Rn	Exchange register with Accumulator	1	2
XCH A, direct	Exchange direct byte with Accumulator	2	2
XCH A,@Ri	Exchange indirect RAM with Accumulator	1	2
XCHD A,@Ri	Exchange low-order Digit indirect RAM with Accumulator	1	2
BOOLEAN VARIABLE			
MANUPULATION			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	1
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	1
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	1
ANL C,bit	AND direct bit to Carry	2	2
ANL C,/bit	AND complement of direct bit	2	2
ORL C,bit	OR direct bit to Carry	2	1
ORL C,/bit	OR complement of direct bit to Carry	2	1
MOV C,bit	Move direct bit to Carry	2	1
MOV bit,C	Move Carry to direct bit	2	1

JC rel	Jump if Carry is set	2	2
JNC rel	Jump if Carry is not set	2	2
JB bit.rel	Jump if direct Bit is set	3	2
JNB bit,rel	Jump if direct Bit is Not set	3	3
JBC bit,rel	Jump if direct Bit is set & clear bit	3	3
PROGRAM BRANCHING			
ACALL addr11	Absolute Subroutine Call	2	3
LCALL addr16	Long Subroutine Call	3	3
RET	Return from Subroutine	1	3
RETI	Return from interrupt	1	3
AJMP addr11	Absolute Jump	2	3
LJMP addr16	Long Jump	3	3
SJMP rel	Short Jump (reletive addr)	2	2
JMP @A+DPTR	Jump indirect relative to the DPTR	1	2
JZ rel	Jump if Accumulator is Zero	2	2
JNZ rel	Jump if Accumulator is Not Zero	2	2
CJNE A, direct, rel	Compare direct byte to Accumulator and Jump if Not Equal	3	3
CJNE A,#data,rel	Compare immediate to Accumulator and Jump if Not Equal	3	3
CJNE Rn,#data,rel	Compare immediate to register and Jump if Not Equal	3	3
CJNE @Ri,#data,rel	Compare immediate to indirect and Jump if Not Equal	3	3
DJNZ Rn,rel	Decrement register and Jump if Not Zero	2	2
DJNZ direct,rel	Decrement direct byte and Jump if Not Zero	3	2
NOP	No Operation	1	1

8. ABSOLUTE MAXIMUMRATINGS

Symbol	Parameter	Rating	Unit
V _{DD}	Chip Core Supply Voltage	-0.3 to 2.0	V
V _{DDIO}	I/O Supply Voltage	-0.3 to 3.6	V
RF _{IN}	Input RF Level	10	dBm
T _{STG}	Storage Temperature	-40 to 85	°C

Stress exceeding one or more of the limiting values may cause permanent damage to the device.

These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "ELECTRICAL SPECIFICATIONS" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE1: All voltage values are based on V_{SS} and V_{SSIO} .

NOTE2:These values were obtained under worst-case test conditions specially prepared for the MG2455 and these conditions are not sustained in normal operation environment.

CAUTION: ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

9. DC CHARACTERISTICS

Symbol	Parameter	MIN	ТҮР	МАХ	Unit
Vdd	Core Supply voltage (DVDD, AVDD_VCO,AVDD_RF1, AVDD_DAC,AVDD_XOSC,AVDD ,AVDD_CP)	1.35	1.5	2.0	V
V _{DDIO}	I/O Supply voltage(DVDD3V)	2.7	3.0	3.6	V
AGND	Chip Ground		0		V
VIH	High level input voltage	$0.7 \times V_{DD}$		V _{DD}	V
VIL	Low level input voltage	0		$0.3 \times V_{DD}$	V
V _{OH}	High level output voltage	2		V _{DD}	V
V _{OL}	Low level output voltage	0		0.4	V
T _A	Air temperature	-40		85	°C

 V_{DD} = 1.5 V, V_{DDIO} = 3.0 V, T_A (air temperature) = 25°C if nothing else stated.

- **NOTE 3:** All voltage values are based on AGND. All input and output voltage levels are TTL-compatible. XOSCI can be driven by CMOS clock.
- **NOTE 4:** I/O Supply Voltage(DVDD3) is recommended to use less than twice of Core Supply Voltage.

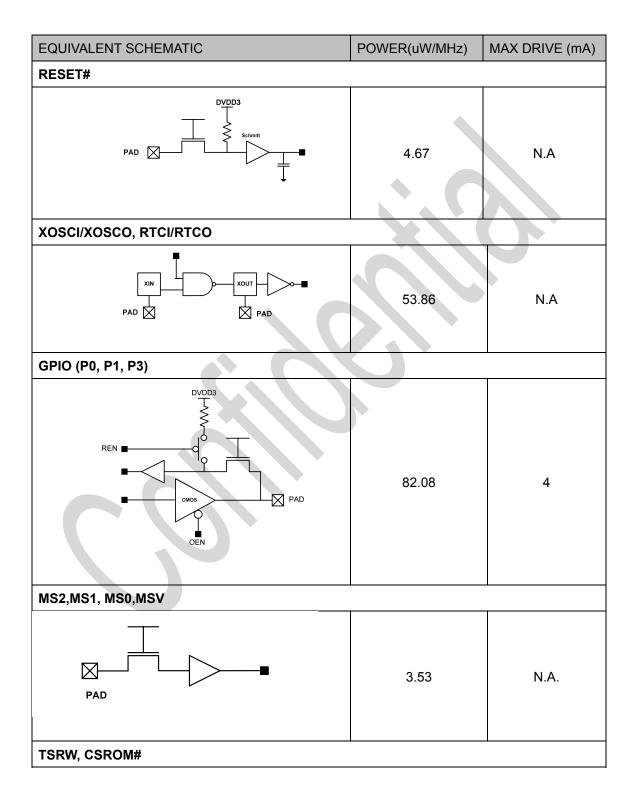
10. ELECTRICAL SPECIFICATIONS

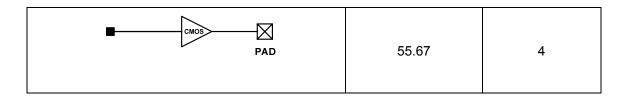
Parameter	MIN	ТҮР	МАХ	UNIT
Current Consumption				
MCU Standby		TBD		mA
Active MCU without RX/TX Operation		2.25		~^^
(AES, Peripheral, SADC Disabled)		3.35		mA
Active MCU with TX Mode				
(AES, Peripheral, SADC Disabled)				
@+8dBm Output Power		33.8		
@+7dBm Output Power @+6dBm Output Power		31.6 30.9		
@+5dBm Output Power		30.9 30.6		mA
@+4dBm Output Power		26.9		
@+3dBm Output Power		26.8		
@+2dBm Output Power		25.4		
@+1dBm Output Power		24.5		
@+0dBm Output Power		23.9		
Active MCU with RX Mode		00.5		
(AES, Peripheral, SADC Disabled)		30.5		mA
PM1		25		μA
PM2		< 2		μΑ
PM3		<1		μA
AES		2.1		mA
Peripheral		2.2		mA
Sensor ADC		1		mA
RF Characteristic	•	•	•	-
RF Frequency Range	2.400		2.4835	GHz
Transmit Data Rate (Normal Mode ²)		250		kbps

Temp = 25C, VDD=3.0V, Core Voltage¹=1.5V

¹ AVDD_VCO, AVDD_RF1, AVDD_CP, AVDD_DAC, AVDD, AVDD_XOSC, DVDD ² ZigBee Standard

Transmit Data Rate (Turbo Mode)		500		kbps
Transmit Data Rate (Premium Mode)		1000		kbps
Transmit Chip Rate		2000		kChips/s
Maximum Output Power			8	dBm
Programmable Output Power Range		30		dB
Receiver Sensitivity Normal Mode Turbo Mode Premium Mode		-98 -95 -91		dBm
Adjacent Channel Rejection +5MHz -5MHz		44 43		dB
Alternate Channel Rejection +10MHz -10MHz		48 47		dB
Others Channel Rejection ≥+15MHz ≥-15MHz		49 49		dB
Co-channel Rejection		-6.0		dB
Blocking/Desensitization +/- 5 MHz from band edge +/- 10 MHz from band edge +/- 15 MHz from band edge +/- 20 MHz from band edge +/- 30 MHz from band edge +/- 50 MHz from band edge	5	TBD TBD TBD TBD TBD TBD		dBm
Spurious Emission (30~900MHz)		-60		dBm
Spurious Emission (0.9~12.75GHz)		-44		dBm
Spurious Emission (1.8~1.9GHz)		-79.7		dBm
Spurious Emission (5.15~5.3GHz)		-79.7		dBm
2 nd Harmonics		-45		dBm
3 rd Harmonics		-60		dBm
Frequency Error Tolerance			±200	kHz
Error Vector Magnitude (EVM)		13		%


				dD
Saturation(Maximum Input Level)		5		dBm
RSSI Dynamic Range		90		dB
RSSI Accuracy		±1.2	+6/-3	dB
RSSI Linearity		±0.2	±6	dB
RSSI Average Time		128		μsec
Symbol Rate Error Tolerance		TBD		ppm
Optimum Load Impedance		TBD		Ω
Frequency Synthesizer				
Phase Noise				
@ ±1kHz offset		-77.83		
@ ±10kHz offset		-72.83		
@ ±100MHz offset		-69.13		
@ \pm 500MHz offset		-102.95		dBc/Hz
@ ±1MHz offset		-107.72		abon 12
@ ±2MHz offset		-111.52		
@ ±3MHz offset		-120.57		
@ ±5MHz offset		-130.22		
PLL Lock Time		110		μsec
PLL Jitter		16		psec
Crystal Oscillator Frequency		16		MHz
Crystal Frequency Accuracy Requirement	-10		+10	ppm
ESR		TBD		Ω
Recommended C ₀		TBD		pF
Recommended C _L		TBD		pF
On-chip RC Oscillator				
Frequency		32.78		KHz
Frequency Accuracy		TBD		ppm
Sensor ADC				
Number of Bits		8		bits
Conversion Time		256		μsec
Differential Nonlinearity(DNL)		±1.7		LSB
Integral Nonlinearity(INL)		±2.4		LSB


SINAD(Sine Input)		51.0		dB
On-chip Voltage Regulator				
Supply range for Regulator	1.9	3.0	3.6	V
Regulated Output		1.5		V
Maximum Current			140 ³	mA
No Load Current		15		μA
Start-up Time		260 ⁴		μsec

 $^{^3}$ Voltage Regulator Input Voltage=3V, 80mV voltage drop 4 10 μF and 100pF load capacitor

11. DIGITAL I/O

12. AC CHARACTERISTIC

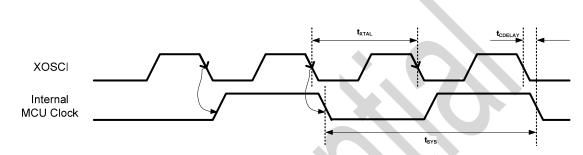
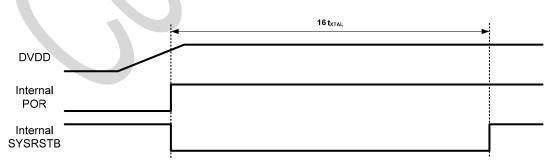
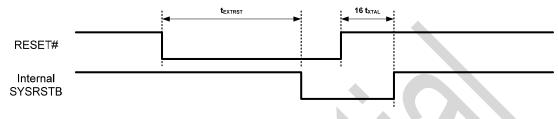
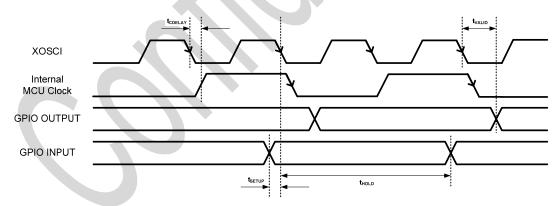


Figure 23. Internal MCU Clock Timing

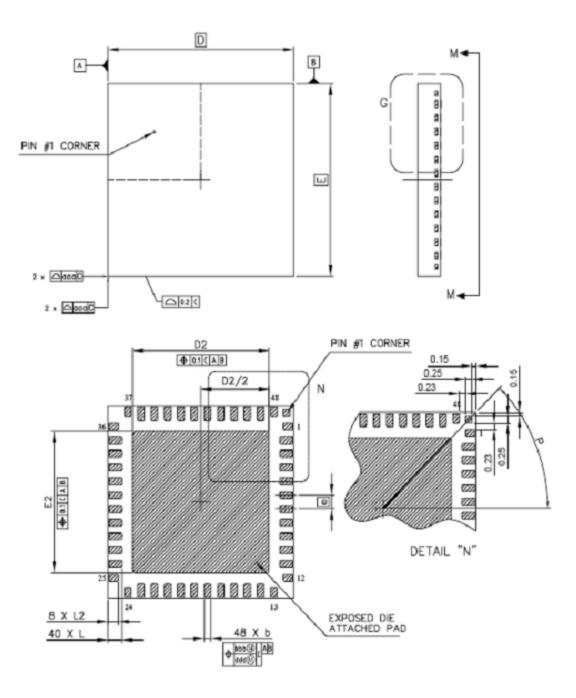
Parameter	MIN	ТҮР	MAX	UNIT
Internal MCU Clock Timing				
t _{XTAL} (Crystal Oscillator Duration)		62.5		ns
t _{SYS} (Internal MCU Clock Duration)		125		ns
t _{CDELAY} (Internal MCU Clock Delay)			0.5	ns

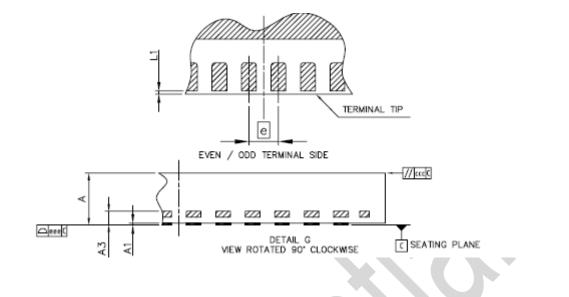




Figure 24. POR Timing

Parameter	MIN	ТҮР	MAX	UNIT
POR Timing				
16 t _{xtal}		16 x 62.5		ns

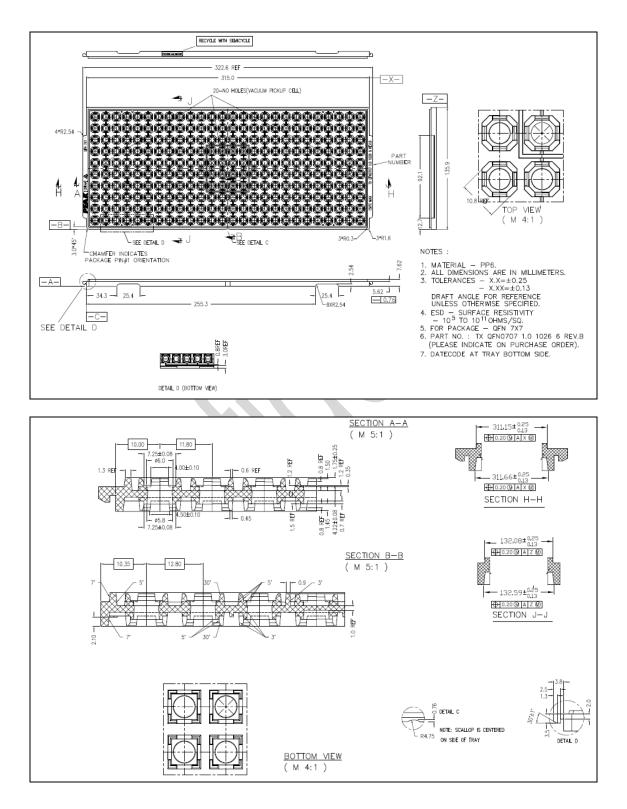
Parameter	MIN	ТҮР	МАХ	UNIT
RESET# Timing				
t _{EXTRST} (RESET# Interval)	1			ms
16 t _{xtal}		16 x 62.5		ns




Parameter	MIN	ТҮР	МАХ	UNIT		
GPIO Timing						
t _{SETUP}	1			ns		
t _{HOLD}	1			ns		
t _{VALID}			10	ns		

13. PACKAGE INFORMATION

Package type is 48-pin QFN package with down-bonding.





DIM	MIN NOM MAX	NOTES		
А	0.80 0.85 0.90	1.0 DIMENSIONING & TOLERANCEING CONFIRM TO ASME Y14.5M-1994.		
A1	0.00 0.05	2.0 ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN		
A3	0.203 REF	DEGREES.		
b	0.18 0.25 0.30	3.0 DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS		
D	7.00 BSC	MEASURED BETWEEN 0.25mm AND 0.30mm FROM TERMINAL TIP.		
Е	7.00 BSC	DIMENSION L1 REPRESENTS TERMINAL FULL BACK FROM PACKAGE EDGE UP TO 0.1mm IS ACCEPTABLE.		
D2	5.04 5.14 5.24			
E2	5.04 5.14 5.24	4.0 COPLANARITY APPLIES TO THE EXPOSED HEAT SLUG AS WELL AS THE TERMINAL.		
e	0.50 BSC			
L	0.48 0.53 0.58	5.0 RADIUS ON TERMINAL IS OPTIONAL.		
L1	0.00 0.10			
L2	0.35 0.40 0.45			
Р	45° BSC			
aaa	0.10			
bbb	0.10			
ccc	0.10			
ddd	0.05			
eee	0.08			
	1	1		

Figure 27. Package Drawing

13.1. TRAY SPECIFICATION

13.2. CARRIER TAPE AND REEL SPECIFICATION TBD

14. ORDERING INFORMATION

Ordering Part Number	Description Minimum Order Quantity(M	
MG2450-B72	72-pin VFBGA Package	490(tray), 2500(reel)
MG2455-F48	48-pin QFN Package	260(tray), 2500(reel)

Contact Information

RadioPulse Inc. Sales & Marketing Team

Phone: +82-2-478-2963~5 sales@radiopulse.co.kr

3rd Fl. Hans B/D II, 111-6 Seongnae-dong, Gandong-gu, Seoul, 134-883, Korea

Worldwide Distributor

Distributor in Korea

Uniquest Corporation Phone: 031-708-9988 Fax: 031-708-6596 radiopulse@uniquest.co.kr

Distributor in Hong Kong & China

Cytech Technology Phone: (852) 2375 8866 Fax: (852) 2375 7700 sales@cytech.com

Distributor in Japan

M2M Japan Phone: (86)-3-5646-1271 Fax: (86)-3-5646-1272 info@m2mj.net

Distributor in Germany

CompoTEK GmbH Phone: (49) 89-54 43 23-0 Fax: (49) 89-53 56 23 th@compotek.de

Distributor in India/Asia

E-smart Distribution Pte Ltd Phone: (65) 6299 7811 Fax: (65) 6294 1518 info@esmartholdings.com

Distributor in UK

APC-Hero Phone: (44) 1480 226600 Fax: (44) 1480 218752 sales@apc-hero.co.uk

Distributor in Singapore

Mccoy Components Pte. Ltd. Phone: (65) 6749 1698 Fax: (65) 6749 1868 guan@mccoy.com.sg

Distributor in Israel

Arazim Phone: (972) 8 9230555 Fax: (972) 8 923 0044 info@arazim.com

Distributor in Spain

Sensing&Control Phone: (34) 647 814 363 fax: (34) 93 806 7876 info@sensingcontrol.com

Distributor in Italy Cefra Phone: (39) 2 424 1471 Fax : (39) 2 4229 1304 info@cefra.it

RadioPulse Inc

3rd Fl., Hans B/D II, 111-6 Seongnae-Dong, Gangdong-Gu, Seoul, Korea, 134-883, Korea

> URL: <u>www.radiopulse.co.kr</u> Tel: +82-2-478-2963~5 Fax: +82-2-478-2967

> > sales@radiopulse.co.kr

About RadioPulse Inc.

RadioPulse is a Being Wireless solution provider offering wireless communication & network technologies and developing next generation wireless networking technologies.

The new wireless networking solutions envisioned by RadioPulse will enable user to enjoy wireless technologies with easy interface.

Founded in April of 2003, the company maintains it headquarters and R&D center in Seoul, Korea.

Copyright (c) 2007 RadioPulse. All rights reserved.