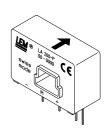


Current Transducer LA 200-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Α Primary nominal r.m.s. current 200 I_{PN} Primary current, measuring range $0.. \pm 300$ R_{M} Measuring resistance @ $T_{.} = 70^{\circ}C$ $\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$ $R_{M \min} R_{M \max}$ @ ± 200 A max 30 with ± 12 V 26 Ω @ ± 250 A _{max} 8 0 0 4 Ω @ ± 200 A _{max} 0 60 0 56 Ω with ± 15 V $@ \pm 300 A_{max}$ 12 8 Ω mΑ Secondary nominal r.m.s. current 100 Conversion ratio 1:2000 Supply voltage (± 5 %) ± 12 .. 15 Current consumption $16(@\pm 15 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn kV

Accuracy - Dynamic performance data								
X	Accuracy @ I _{PN} , T _A = 25°C	@ ± 15 V (± 5 %)	± 0.40		%			
		@ ± 12 15 V (± 5 %)	± 0.65		%			
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity	nearity		< 0.15				
			Тур	Max				
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.20	mΑ			
I _{OM}	Residual current ¹⁾ @ $I_p = 0$, after an overload of 3 x I_{pN}			± 0.25	mΑ			
I _{OT}	Thermal drift of I	0°C + 70°C	± 0.10	± 0.25	mΑ			
٥.	· ·	- 25°C + 85°C	± 0.10	± 0.30	mΑ			
t ra	Reaction time @ 10 % of I _{Pm}	nax	< 500		ns			
t,	Response time 2) 3) @ 90 % o		< 1		μs			
di/dt	di/dt accurately followed 3)	· max	> 200		A/µs			
f	Frequency bandwidth 3) (- 1 d	dB)	DC ′	100	kHz			


Accuracy - Dynamic performance data

General data						
T _A	Ambient operating temperature		- 25 + 85	°C		
T _s	Ambient storage temperature		- 40 + 90	°C		
R,		$T_A = 70^{\circ}C$	76	Ω		
		$T_A = 85^{\circ}C$	80	Ω		
m	Mass		40	g		
	Standards 4)		EN 50178			

Notes: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- ³⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer
- ⁴⁾ A list of corresponding tests is available

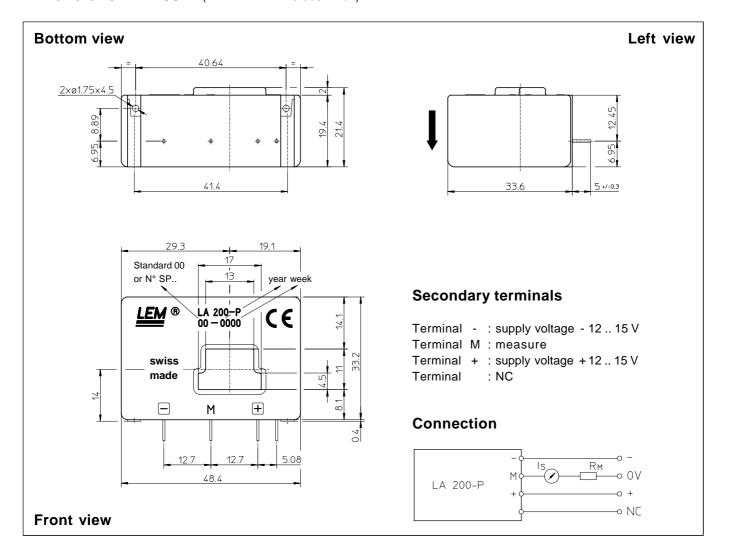
$I_{PN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980716/6

Dimensions LA 200-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

 Fastening & connection of primary Recommended PCB hole

 Supplementary fastening Recommended PCB hole Recommended screws LEM code ± 0.2 mm

17 x 11 mm

4 pins 0.63 x 0.56 mm

0.9 mm

2 holes Ø 1.75 mm

2.4 mm

KA 22 x 6

47.30.60.006.0

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
 another
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.