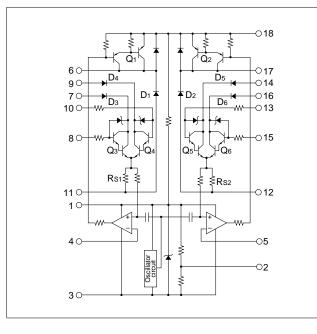
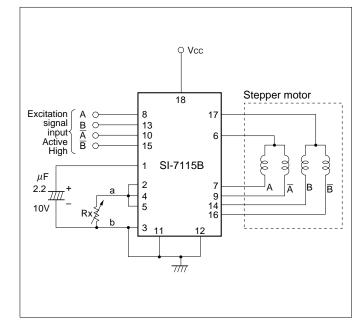
Unipolar Driver ICs

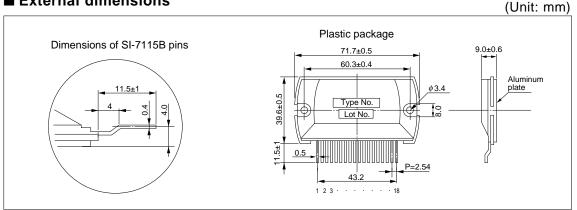

SI-7115B

■ Characteristics


(Ta = 25°C)

															-		(Ia	= 25 C
Parameter	Absolute maximum rating					Electrical characteristics								Phase switching signal input				
	Applied	Output	Junction	Operating	Storage	Supply		у	Output		Inp	ut	Oscillation		ON			OFF
	voltage	current	temperature	ambient	temperature	voltage		current curr		ent	frequency		Output	Input	Input	Input		
				temperature		Vcc(V)			lo(A) li		lin(mA)		f (k	(Hz)	current	voltage	current	voltage
Type No.	Vsurge(V)	lo(A/ø)	Tj(°C)	Top(°C)	Tstg(°C)	min	typ	max	min	max	min	max	min	max	(A/ø)	(V)min	(mA)min	(V)max
															0.2	2.7	1.0	
SI-7115B	40	1.7	125	-20 to +80	-30 to +100	20	24	4 30	0 0.2	2 1.5		5.0	19	19 24	0.5	3.1	1.2	- 0.8
												5.0			1.0	3.6	1.4	
															1.5	4.5	2.0	

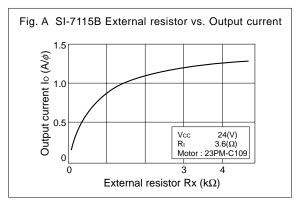

Block diagram


Equivalent circuit diagram

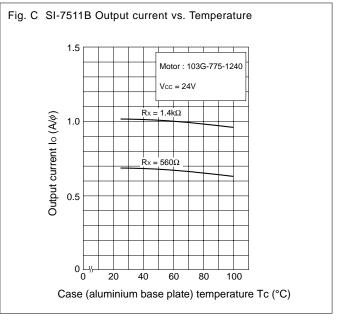
External connection diagram

External dimensions

Application Note

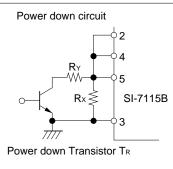

Determining the output current lo (motor coil current) I

The output current lo can be set to any value by connecting an external resistor Rx across pin 3 and all of pins 2, 4 and 5. Fig. A, B and C show the relationship between the external resistor and the output current, the supply voltage and the output current, and the output current and the temperature, respectively.


Output current Io

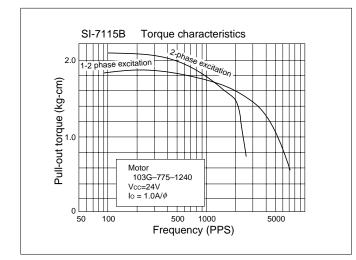
Output current lo	Rx	
0.31 to 0.39 (A/ø)	200 (Ω)	
0.95 to 1.05 (A/ø)	1.4 (kΩ)	

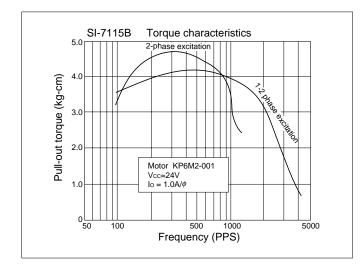
Condition Vcc = 24V, Ta = 25°C 2-phase excitation Holding mode Motor: 23PM-C109



Application Note

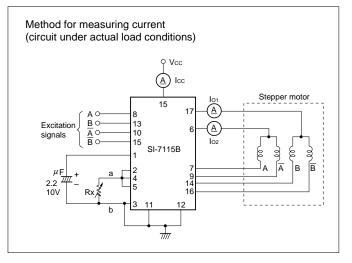
Power down mode


The SI-7115B can be operated in power down mode. The circuit is shown below.


As shown in the figure, when the power down transistor is switched on, (Ry is power down resistor) Rx/RY becomes a current fixing resistance and the current during power down mode can be obtained by substituting this resistance to Rx in the previous Fig. A.

Example of Frequency vs. Torque characteristics

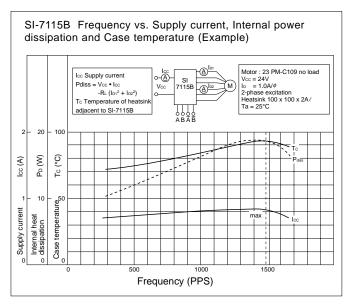
The following two graphs show the relationship between frequency (pps) and pull-out torque (kg - cm) of SI-7115B when used with two types of motor.

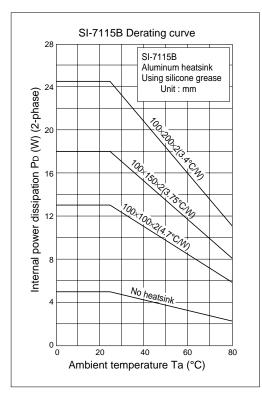


Thermal design

In SI-7115B, the avalanche diode of the phase-switching transistor is operated in breakdown condition and the energy built up in the inductance of the motor coil is dissipated as heat of the transistor. Hence, when the motor rotates, the internal heat dissipation increases compared with when the motor is stopped.

Therefore, the internal heat dissipation of 7115B can be computed from the data taken with actual load through the following procedures.


(1) Vary the rotation speed of the motor within the actual operating range in a circuit under actual load conditions and measure the supply current lcc and the corresponding output current lo1 and lo2.


(2) Obtain the internal power dissipation Pdiss (4-phase) of 7115B through the following formula.

 $Pdiss = Vcc \bullet lcc - (lo1^{2} + lo2^{2}) \bullet RL$

The figure below shows the relationship between frequency (PPS) and Icc, Pdiss, and case temperature Tc.

Application Note

- (3) Obtain the heatsink area corresponding to the ambient temperature Ta from the derating curve.
- (4) Verify that the temperature of the aluminum base plate of 7115B or adjacent heatsinks is below 85°C (equivalent to max. ambient temperature) when operating under actual load conditions.

SI-7200M, SI-7230M, SI-7115B, SI-7300A, SI-7330A, SI-7500A and SI-7502

Handling Precautions

(Note: The SI-7502 is applicable for item (2) only.)

For details, refer to the relevant product specifications.

(1) Tightening torque:

The torque to be applied in tightening screws when mounting the IC on a heatsink should be below $49N\bullet m$.

(2) Solvent:

Do not use the following solvents:

Substances that dissolve the package	Chlorine-based solvents : Trichloroethylene, Trichloroethane, etc. Aromatic hydrogen compounds: Benzene, Toluene, Xylene, etc. Ketone and Acetone group solvents
Substances that weaken the package	Gasoline, Benzine and Kerosene

(3) Silicone grease:

The silicone grease to be used between the aluminum base plate of the hybrid IC and the heatsink should be any of the following:

- G-746 SHINETSU CHEMICAL INDUSTRIES CO., LTD.
- YG6260 TOSHIBA SILICONE CO., LTD.
- SC102 DOW CORNING TORAY SILICONE CO., LTD.

Please pay sufficient attention in selecting silicone grease since oil in some grease may penetrate the product, which will result in an extremely short product life.

Others

• Resistance against radiation

Resistance against radiation was not considered in the development of these ICs because it is assumed that they will be used in ordinary environment.