

SCA610 Series

Accelerometer/Inclinometer

FEATURES

- Available ranges ±0.5 g (±30 °), ±1 g (±90 °), ±1.5 g, ±1.7 g, ±3.0 g
- 8-pin plastic surface mount DIP package mountable with pick and place machines
- · Enhanced failure detection
- Digitally activated electrostatic self test (not for inclinometers)
- · Calibration memory parity check
- Continuous connection failure detection
- Bi-directional acceleration measurement
- Controlled frequency response in the sensing element
- Single +5 V supply; ratiometric voltage output in the range $4.75 \dots 5.25 \ \text{V}$
- · Lead-free reflow solderable lead-free component

BENEFITS

- Exceptional reliability, unprecedented accuracy and excellent stability over temperature and time
- Outstanding overload and shock durability
- No additional components required

APPLICATIONS

- · Acceleration measurement
- · Inclination measurement
- · Motion measurement
- · Vibration measurement

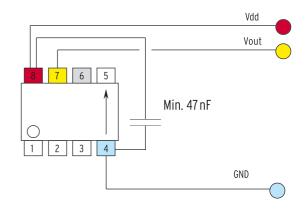
For customised product please contact VTI Technologies

ELECTRICAL CHARACTERISTICS					
Parameter	Condition	Min.	Тур.	Max.	Units
Supply voltage Vdd		4.75		5.25	V
Current consumption	Vdd = 5 V; No load		2.0	4.0	mA
Operating temperature		- 40		+ 125	°C
Resistive output load	Vout to Vdd or Vss	20			kOhm
Capacitive load	Vout to Vdd or Vss			20	nF
Output noise (1	DC4 kHz			5	mVrms

Parameter	Condition/ Comment	SCA610- CAHH1G (13	SCA610- CA1H1G (13	SCA610- C21H1A	SCA610- C23H1A	SCA610- C28H1A	SCA610- C13H1A	SCA610- CC5H1A	Units
Measuring range ⁽²	Nominal	±0.5 (±30°)	±1(±90°)	±1	±1.5	±1.7	±1.5	±3	g
Mounting plane ⁽³	Measuring Direction	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	
Zero point (nom.) (4	Mounting position	Vdd/2	Vdd/2	Vdd/2	Vdd/2	Vdd/2	Vdd/2	Vdd/2	V
Sensitivity	@ room temperature	4 (5b	2 ^{(5a}	2 ^{(5a}	1.333 ^{(5a}	1.2 ^{(5a}	1.33 ^{(5a}	0.75 ^{(5a}	V/g
Zero Point error ⁽⁶	-40125 °C	±50	±50	±125	±125	±125	±125	±195	mg
Sensitivity error	-40125 °C	±4 ^{(8b}	±4 (8a	±5 ^{(8a}	±5 (8a	±5 ^{(8a}	±5 (8a	±5 ^{(8a}	%
Sensitivity error (7	-2585 °C	±2.5 ^{(8b}	±2.5 (8a	±3 (8a	±3 (8a	±3 (8a	±3 (8a	±3 (8a	%
Typical non-linearity (7	Over measuring range	±10 (9b, c	±10 ^{(9a, c}	±20 ^{(9a}	±20 (9a	±20 ^{(9a}	±20 ^{(9a}	±60 ^{(9a}	mg
Cross-axis sensitivity (10		5	5	4	4	4	4	4	%
Frequency response	-3dB point (11	18±10	18±10	50±30	50±30	50±30	400±150	115±55	Hz
Ratiometric error (12	Vdd = 4.755.25 V	2	2	2	2	2	2	2	%

Note 1	The noise density of CAHH1G and CA1H1G is 30 μ g/ \dot{H} z, the noise density of C23H1A and C28H1A	Note 9b	Relative to straight line between ± 0.5 g.			
	is 20 μg/√Hz.	Note 9c	In inclinometer applications a correction based on the angular error resulting from cross-axis			
Note 2	The measuring range is limited by sensitivity, offset and supply voltage rails of the device.		sensitivity around the inclination angle reduces non-linearity.			
Note 3	Measuring direction parallel to the mounting plane.		The cross-axis sensitivity determines how much acceleration, perpendicular to the measuring			
Note 4	Vertical versions in +1 g position, i.e. arrow up: horizontal versions pins down (+0 g)		axis, couples to the output. The total cross-axis sensitivity is the geometric sum of the			
Note 5a	Sensitivity specified as [Vout (+1 g) - Vout(-1 g)] / 2 [V/g] .		sensitivities of the two axes, which are perpendicular to the measuring axis.			
Note 5b	Sensitivity specified as [Vout (+0.5 g) - Vout(-0.5 g)][V/g] .	Note 11	The output has true DC (0 Hz) response.			
Note 6	Zero point error specified as (Vout (+0 g) - Vdd/2) / Vsens [g] (room temp. error included);	Note 12	Supply voltage noise also couples to the output, due to the ratiometric (output proportional			
	Vsens = Nominal sensitivity.		to supply voltage) nature of the accelerometer.			
Note 7	Typical tolerance, not 100 % tested.	Note 13	Self test not recommended.			
Note 8a	Sensitivity error specified as {{[Vout (+1 g) -Vout (-1 g)] / 2} -Vsens} / Vsens x 100 % [%] (room					
	temp. error included); Vsens = Nominal sensitivity.		(5 nol/)			
Note 8b	Sensitivity error specified as {{[Vout (+0.5 g) -Vout (-0.5 g)] / 2} -Vsens} / Vsens x 100 % [%]		netric error is specified as: $RE = 100\% x \left[1 - \frac{Vout(@Vx) x}{Vout(@510)} \right]$			
	(room temp. error included); Vsens = Nominal sensitivity.	The ration	netric error is specified as: $RE = 100\% x 1 - \frac{vx}{1 - \frac{vx}{$			
Note 9a	Relative to straight line between ±1 g.		Vout(@5V)			

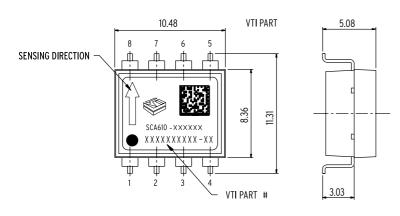
ABSOLUTE MAXIMUM RATINGS			
Parameter	Value	Units	
Acceleration (powered or non-powered)	20000	g	
Supply voltage	-0.3 to +7.0	V	
Voltage at input / output pins	-0.3 to Vdd + 0.3	V	
Temperature range	-55 to +125	oC	

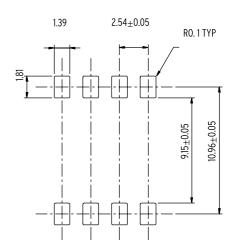

ELECTRICAL CONNECTION

Pin#	Pin Name	Connection
1		Open or capacitively connected to GND for EMC*)
2		Open or capacitively connected to GND for EMC*)
3		Open or capacitively connected to GND for EMC*)
4	GND	Negative supply voltage (VSS)
5		Open or capacitively connected to GND for EMC*)
6	ST	Self-test control
7	VOUT	Sensor analog output

^{*)} recommended capacity min. 20 pF - Effectiveness should be tested and if necessary adapted in

Positive supply voltage (VDD)


RECOMMENDED CIRCUIT


DIMENSIONS PCB PAD LAYOUTS

The accelerometer weighs under 1 g.

The size of the part is approximately (w x h x l) 9 x 5 x 11 mm. Pin pitch is standard 100 mils.

Acceleration in the direction of the arrow will increase the output voltage.

