

M56710FP

F2F Magnetic Stripe Encoding Card Reader

REJ03F0175-0201 Rev.2.01 Mar 31, 2008

Description

The M56710FP is a semiconductor integrated circuit of Bi-CMOS structure having an F2F demodulator function for magnetic card reader.

Features

- Low current dissipation (0.7 mA when on standby as a standard)
- Provided with glance-over selection input (4, 8, and 16 bits)
- Provided with output polarity ("L" active or "H" active) switching input
- Miniature mini-mold package
- Wide operating temperature range Ta = -20 to $75^{\circ}C$

Application

Magnetic card reader

Functional Description

Data signal which is read from magnetic card via magnetic head is input from HD2 and HD1 pins., and converted into F2F pattern signal by analog processing in amplifier OP1, differentiator OP2, sensitivity setting circuit and waveform shaping circuit. If F2F signal is input, the logic section glances over the prescribed number of bits set by IB1 and IB2 input before performing digital processing, and then outputs card reading signal CLS, read clock signal RCP, and read data signal RDT. INV turning to "L" switches each output of CLS. RCP and RDT from "L" active to "H" active.

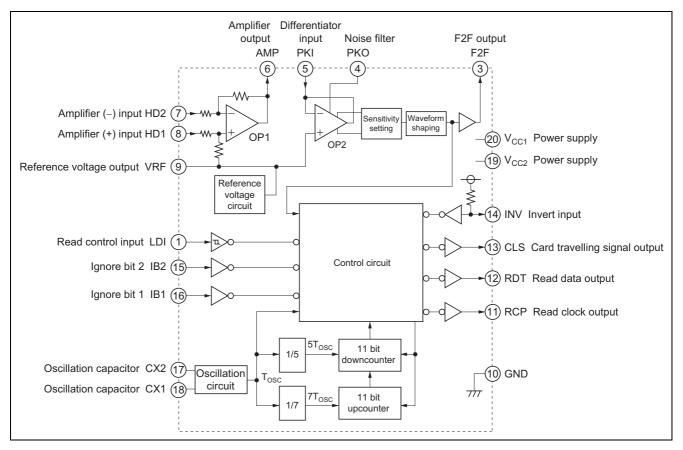
• Standard Bits:

Let the number of glance-over bits set by IB1 and IB2 be M.

Let the Mth FC (flux change) through M+1st FC after LDI input is turned from "L" to "H" be a standard bit with a time width of TB0.

I/O is discriminated from the next bit to this standard bit as a data bit.

• I/O discrimination

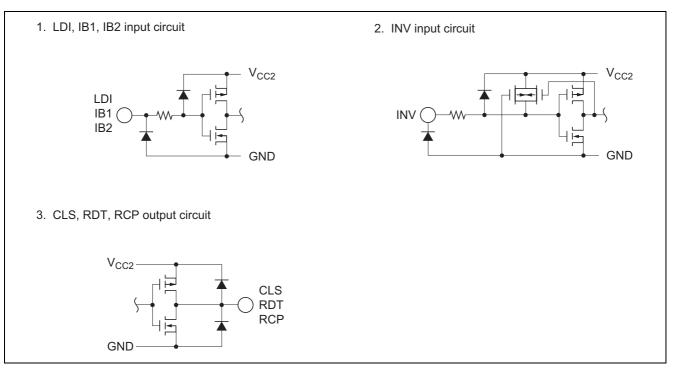

Let the data bit time width of a data bit be TBn, and if there is one next FC between the FC at the end of that bit (i.e. the beginning of the next bit) to 5/7TBn, let the next bit (Bn+1) be data "1", and, if there is no FC, be data "0".

• Output signal time width

When letting the oscillation cycle of oscillation circuit be $T_{\mbox{\scriptsize OSC}}.$

- RCP output pulse width TOW: about 16 $T_{\rm OSC}$
- RCP delay time to RDT: about 8 $T_{\rm OSC}$

Block Diagram



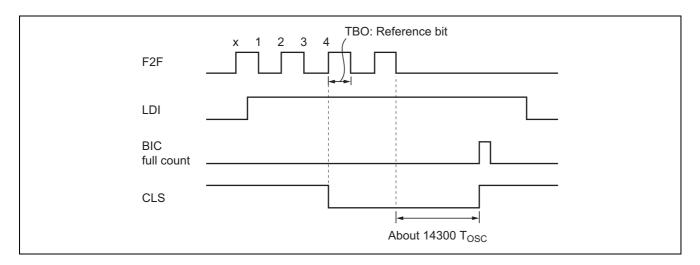
Pin Arrangement

	_	M56710FP	_	
Read control input	$LDI \rightarrow 1$	\bigcirc	20 V _{CC1}	Power supply
	NC 2		19 V _{CC2}	Power supply
F2F output	F2F ← 3		18 CX1	Oscillation capacitor
Noise filter	PKO 4		17 CX2	Oscillation capacitor
Differentiator input	$PKI \rightarrow 5$		16 ← IB1	Ignore bit 1
Amplifier output	$AMP \leftarrow 6$		15 ← IB2	Ignore bit 2
Amplifier (–) input	HD2 \rightarrow 7		14 ← INV	Invert input
Amplifier (+) input	$HD1 \rightarrow 8$		13 \rightarrow CLS	Card travelling signal output
Standard voltage output	VRF 9		12 \rightarrow RDT	Read data output
Grounding	GND 10		11 \rightarrow RCP	Read clock output
	L	(Top view)	NC: no conr	nection
	Outline: P	RSP0020DA-A (2	20P2N-A)	

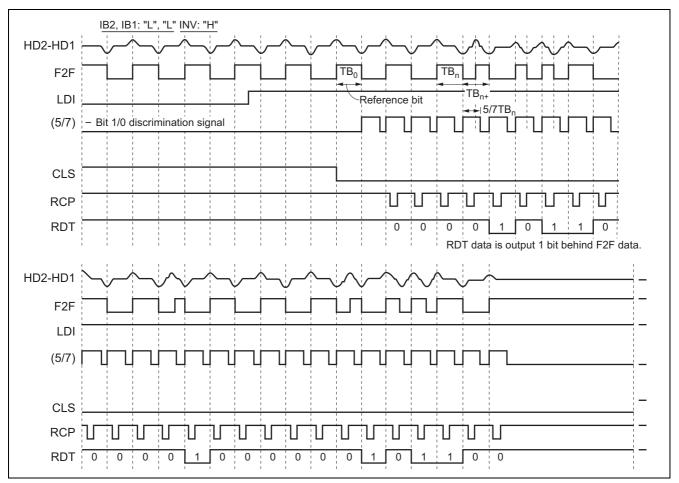
RENESAS

I/O Circuit

Pin Function Description


Pin	Pin		
No.	Name	Name	Function
1	LDI	Read control input	Schmidt trigger input. At "L", reset the internal digital circuit. At "H", F2F modulation is possible.
3	F2F	F2F output	F2F signal output that has amplified, differentiated and further waveform-shaped the magnetic head signal.
4	PKO	Noise filter	Connect noise removing capacitor CNF between PKI and PKO.
5	PKI	Differentiator input	Refer to PKO and AMP.
6	AMP	Amplifier output	Connect resistor RPK and capacitor CPK between AMP and PKI.
7	HD2	Amplifier (–) input	Connect magnetic head between HD1 and HD2.
8	HD1	Amplifier (+) input	Connect magnetic head between HD1 and HD2.
9	VRF	Reference voltage output	Reference voltage output of V _{CC} 1/2
10	GND	Grounding	
11	RCP	Read clock output	Clock pulse output after F2F modulation
12	RDT	Read data output	Data output after F2F modulation
13	CLS	Card travelling signal output	Signal output indicating that card is travelling
14	INV	Invert input	CLS, RDT and RCP output becomes "L" active at "H" (OPEN), and "H" active at "L".
15	IB2	Ignore bit 2	Glance-over bit setting pin
16	IB1	Ignore bit 1	Glance-over bit setting pin
17	CX2	Oscillation capacitor	Connect capacitor C_{OSC} between CX1 and CX2 to set oscillation frequency.
18	CX1	Oscillation capacitor	Connect capacitor C_{OSC} between CX1 and CX2 to set oscillation frequency.
19	V _{CC2}	Power supply	Digital circuit section power supply pin. Supply voltage is V_{CC} .
20	V _{CC1}	Power supply	Analog circuit section power supply pin. Supply voltage is V_{CC} (same voltage as V_{CC2}).

RENESAS


Glance-Over Bit Setting and Timing By IB1 and IB2

		Number of glance-	
IB2 input	IB1 input	over bits	Description
L	L	4	Internal digital circuit is reset with LDI input at "L".
L	Н	8	LDI input may be at "H" at all times.
H	L	16	CLS output turns to "L" after counting the flux change FC (change in the status of F2F) of the number of glance-over bits, and returns to "H" when BIC (bit interval counter) has fully counted. (At "L" active).
Н	Н		—

Note: IB2, IB1 : "L", "L"

Operating Timing Diagram

Absolute Maximum Ratings

 $(Ta = -20 \text{ to } 75^{\circ}C, \text{ unless otherwise noted})$

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	-0.3 to +6.5	V	V _{CC1} , V _{CC2}
Input voltage	VI	–0.3 to $V_{\text{CC}}\text{+}0.3$	V	LDI, IB1, IB2, INV
Input voltage	VI	–0.3 to $V_{\text{CC}}\text{+}0.3$	V	HD1, HD2
Output voltage	lo	-10 to +10	mA	CLS, RDT, RCP
Differential input voltage	V _{ID}	-1.2 to +1.2	V	Between HD2 and HD1 pins
Operating temperature	Topr	-20 to 75	°C	
Storage temperature	Tstg	-55 to 125	°C	

Notes: 1. Voltage is based on GND pin of the circuit (0 V), unless otherwise noted.

2. Direction of the current flowing into the circuit is represented by "positive" (without code) and that flowing out of the circuit by "negative" (-code).

Recommended Operating Conditions

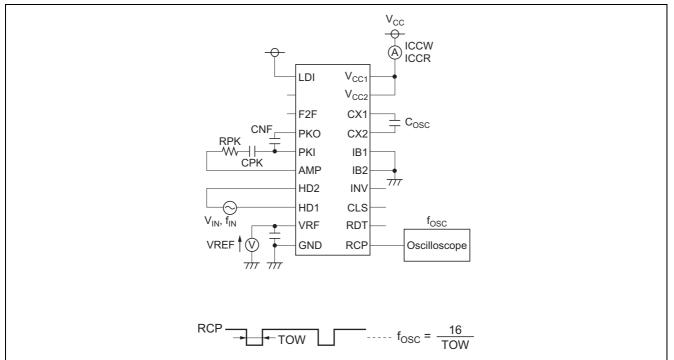
(Ta							to 75°C, unless otherwise noted)
			Limits				
Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Supply voltage	V_{CC1}, V_{CC2}	V _{cc}	4.0	5	5.5	V	V_{CC1} and V_{CC2} shall have the identical voltage.
Input voltage	LDI	VI	0	—	Vcc	V	
"H" input voltage	IB1, IB2, INV	VIH	0.8V _{CC}	—	Vcc	V	
"L" input voltage	IB1, IB2, INV	VIL	0	—	$0.2V_{CC}$	V	
"H" output current	CLS, RDT, RCP	I _{OH}	-0.5	_	0	mA	
"L" output current	CLS, RDT, RCP	I _{OL}	0	_	5	mA	
Differential input voltage	HD2-HD1	V _{IN}	3	_	80	mVp-p	
Input frequency	HD2-HD1	f _{IN}	0.3	—	15	kHz	
Oscillation frequency		fosc	0.2	_	2	MHz	$f_{OSC} = 1/T_{OSC}$
External capacitor	CX1, CX2	Cosc	25	—	100	pF	$f_{OSC} \propto 1/C_{OSC}$
External capacitor	CX1, CX2	Cosc	—	33	_	pF	Reference value when corresponding to 210BPI
External resistor	AMP	R _{РК}	—	470	_	Ω	Reference value when corresponding to 210BPI
External capacitor	PKI	Срк	—	0.033		μF	Reference value when corresponding to 210BPI
External capacitor	PKI, PKO	C_{NF}	—	220	_	pF	Reference value
External resistor	PKI, F2F	R _{PF}	—	4.7		MΩ	Reference value
External capacitor	V _{CC1} , V _{CC2}	C _{VC}	—	0.1		μF	Reference value
External capacitor	VRF	C _{VR}	0.8	1	2	μF	Reference value

Electrical Characteristics

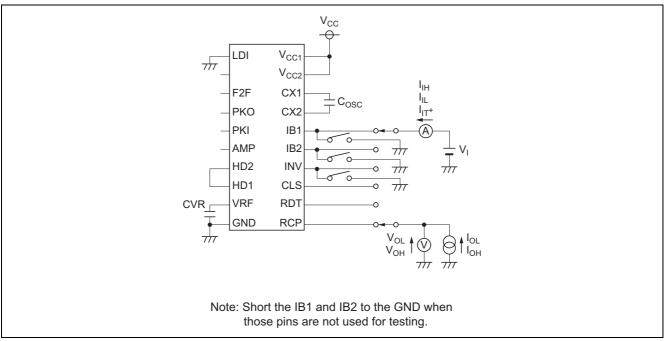
$(Ta = -20 \text{ to } 75^{\circ}C, V_{CC})$	= 5 V, unless otherwise noted)
--	--------------------------------

			Test		Limits	1		, unless other wise noted)
lter	n	Symbol	Circ uit	Min	Тур	Max	Unit	Test Conditions
Threshold	IB1, IB2,	VTH		0.3V _{CC}		0.7V _{CC}	V	$V_{CC} = 4$ to 5.5 V
voltage	INV							
"L" output	CLS, RDT,	V _{OL}	2		—	0.2	V	$V_{CC} = 4 \ V \qquad I_{OL} = 10 \ \mu A$
voltage	RCP		2			0.4	V	$I_{OL} = 5 \text{ mA}$
"H" output	CLS, RDT,	V _{OH}	2	3.8			V	$V_{CC} = 4 V \qquad I_{OH} = -10 \ \mu A$
voltage	RCP		2	3.2	—	—	V	I _{OH} = -0.5 mA
"L" input	LDI, IB1,	IIL	2	-10	—	+10	μΑ	$V_{CC} = 5.5 \ V, \ V_I = 0 \ V$
current	IB2							
"L" input current	INV	IIL	2	-80	—	-10	mA	$V_{CC} = 5.5 V, V_I = 0 V$
"H" input current	LDI, IB1, IB2, INV	IIH	2	-10	_	+10	μΑ	$V_{CC} = 5.5 \text{ V}, \text{ V}_{I} = 5.5 \text{ V}$
Positive threshold current	INV	IIT+	2	-250	—	-50	μA	$V_{CC} = 5.5 \text{ V}, \text{ V}_{I} = \text{VTH}$
Reference voltage	VRF	VREF	1	2.3	2.5	2.7	V	$V_{IN} = 0 mVp-p$
Voltage gain 1	OP1	GV11	3	18	20	24	Double	f _{IN} = 1 kHz
								$V_{IN} = 80 \text{ mVp-p}$ sine wave
Voltage gain 2	OP1	GV21	3	18	20	24	Double	f _{IN} = 15 kHz
								V _{IN} = 80 mVp-p sine wave
Input	OP1	RIN1	3	7	10	14	kΩ	f _{IN} = 1 kHz
resistance	0.54	100004		-				$V_{IN} = 80 \text{ mVp-p sine wave}$
Maximum output voltage	OP1	VOPP1	3	2		_	Vр-р	f _{IN} = 1 kHz sine wave THD AMP = 5%
"L" sensitivity	PKI – F2F	IIL2	4	_		-0.3	μA	VM, F2F < 0.5 V
current								
"H" sensitivity current	PKI – F2F	IIH2	4	0.3	—	—	μΑ	VM, F2F > 4.5 V
Positive threshold voltage	PKI – F2F	VTH+2	5	0.2	0.45	0.7	V	On the VRF basis
Negative threshold voltage	PKI – F2F	VTH-2	5	-0.7	-0.45	-0.2	V	On the VRF basis
Threshold differential voltage	PKI – F2F	VTHD2	_	-0.15	—	0.15	V	(VTH+2) – VTH–2
Pin voltage range	РКО	VPKO	4	-1.2	_	1.2	V	On the VRF basis PK = 1 mA - +1 mA
"L" output voltage	F2F	VOL3	5		—	0.5	V	VPKI = 0 V, IF2F = 0.5 mA
"H" output voltage	F2F	VOH3	5	4.5	—	—	V	VPKI = 5 V, IF2F = -0.5 mA
Positive threshold voltage	LDI	VTH+4	6	2.5	—	3.5	V	

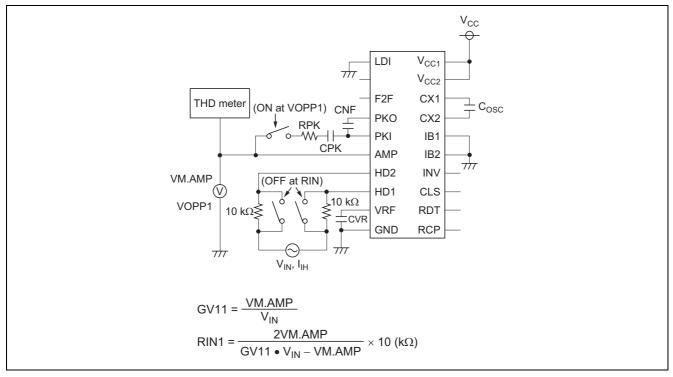
					(Ta =	-20 to 75	5°C, V _{CC} =	5 V, unless otherwise noted)
			Test		Limits			
Item		Symbol	Circ uit	Min	Тур	Мах	Unit	Test Conditions
Negative threshold voltage	LDI	VTH-4	6	1.5	—	2.7	V	
Hysterisis width	LDI	VHY4	_	0.5	—	1.5	V	(VTH+4) – (VTH–4)
Standby circuit current	V _{CC1} , V _{CC2}	ICCW	1		0.7	1.0	mA	$V_{IN} = 0 mVp-p$
Operating circuit current	V _{CC1} , V _{CC2}	ICCR	1	_	1.9	2.4	mA	$\label{eq:III} \begin{array}{l} f_{IN} = 8.2 \ \text{kHz} \\ V_{IN} = 68 \ \text{mVp-p sine wave} \\ f_{OSC} = 1 \ \text{MHz} \end{array}$
Oscillation frequency	RCP	f _{OSC}	1	0.75	_	1.5	MHz	C _{OSC} = 33 pF
Output pulse width	RCP	TOW	7	15	16	17	μs	f _{OSC} = 1 MHz
Intra-output delay time	RDT, RCP	TOD	7	7	8	9	μs	f _{OSC} = 1 MHz
Input noise width	INV	TNW	7	0.5	_	_	μs	


Note: 1. Min. and max. limits do not represent absolute values.

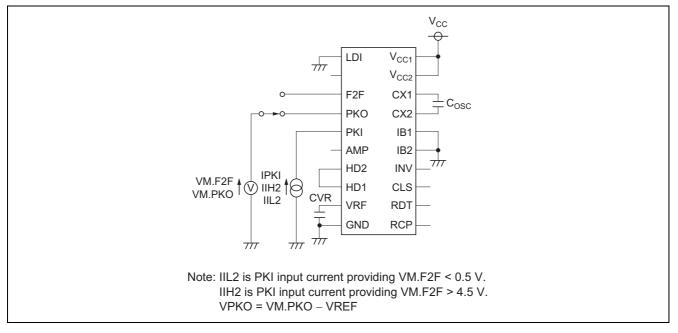
2. Typ. limits represent standard values when Ta = $25^{\circ}C$ and V_{CC} = 5V.


Test Circuit

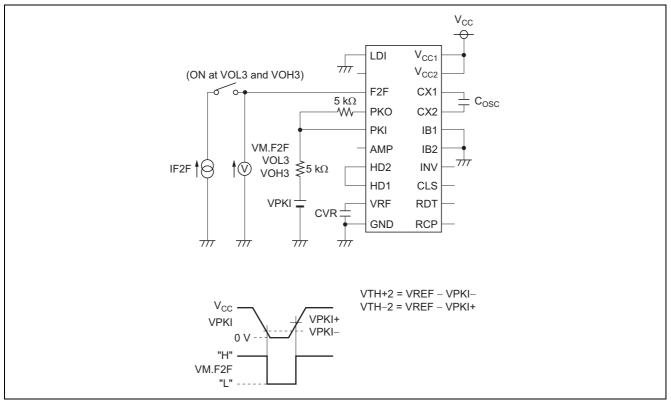
On the following drawing, $C_{OSC} = 33 \text{ pF}$, RPK = 470 Ω , CPK = 0.033 μ F, CNF = 470 pF, CVR = 1 μ F


1. Testing of VREF, ICCW, ICCR, fosc

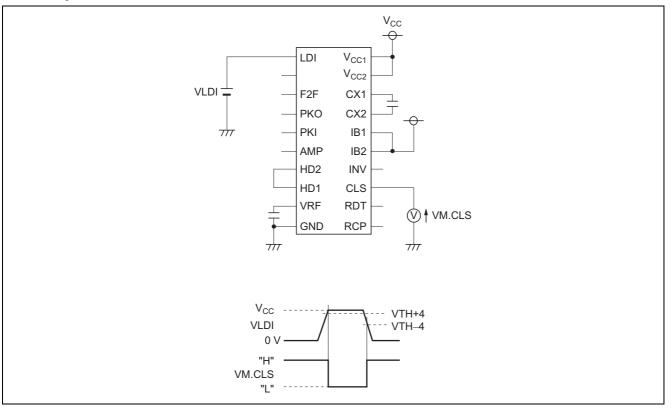
2. Testing of V_{OL} , V_{OH} , I_{IL} , I_{IH} , I_{IT+}

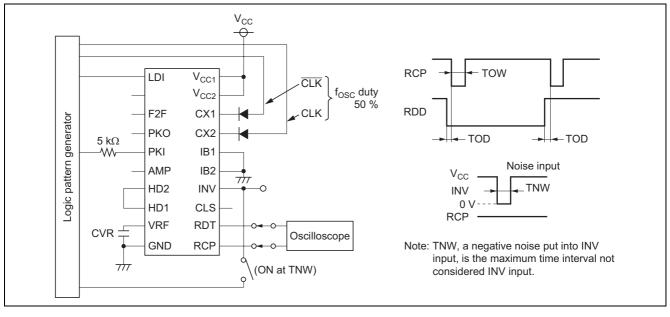


3. Testing of GV11, GV21, RIN1, VOPP1

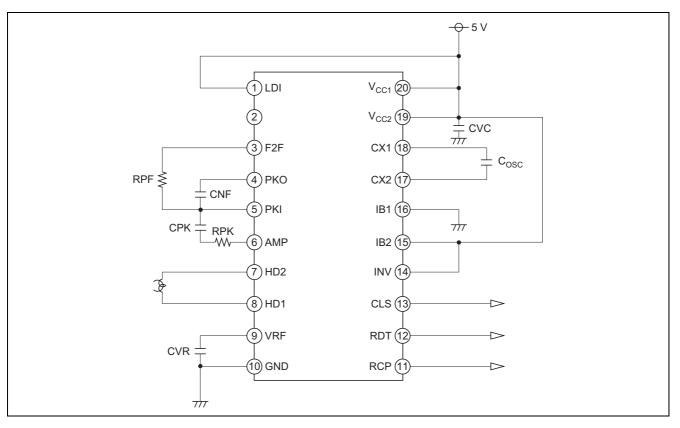


M56710FP

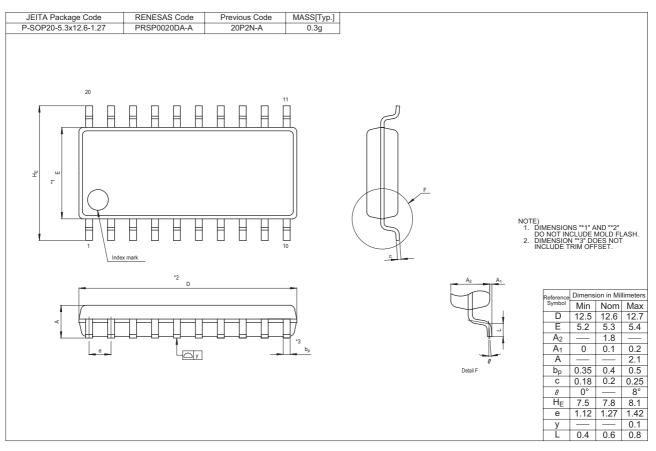

4. Testing of IIH2, IIL2, VPKO


5. Testing of VTH+2, VTH-2, VOL3, VOH3

6. Testing of VTH+4, VTH-4



7. Testing of TOW, TOD, TNW



Application Example

When setting the glance-over bit to 16 bits to let it be "L" active output

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a fast stude of the document. You should evaluate the information in light of the total system before deciding about the applicability or there were provided specific by series as subal table. The subality of the series of the subality of the series of the subality of the series as subality of the series of any damages incurred as a state of the date this document.
 When using or otherwise regulations in the information in this document. Dut Renesas as subality of that series of any damages incurred as a state of otherwise systems for transportation and traffic by the series of the series of the series of the series of the

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com