
S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-1

6 SAM88RCRI INSTRUCTION SET

OVERVIEW

The SAM88RCRI instruction set is designed to support the large register file. It includes a full complement of
8-bit arithmetic and logic operations. There are 41 instructions. No special I/O instructions are necessary because
I/O control and data registers are mapped directly into the register file. Flexible instructions for bit addressing,
rotate, and shift operations complete the powerful data manipulation capabilities of the SAM88RCRI instruction
set.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 13-bit program memory or data memory addresses. For
detailed information about register addressing, please refer to Chapter 2, "Address Spaces".

ADDRESSING MODES

There are six addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), and
Immediate (IM). For detailed descriptions of these addressing modes, please refer to Chapter 3, "Addressing
Modes".

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-2

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDC dst,src Load program memory

LDE dst,src Load external data memory

LDCD dst,src Load program memory and decrement

LDED dst,src Load external data memory and decrement

LDCI dst,src Load program memory and increment

LDEI dst,src Load external data memory and increment

POP dst Pop from stack

PUSH src Push to stack

Arithmetic Instructions

ADC dst,src Add with carry

ADD dst,src Add

CP dst,src Compare

DEC dst Decrement

INC dst Increment

SBC dst,src Subtract with carry

SUB dst,src Subtract

Logic Instructions

AND dst,src Logical AND

COM dst Complement

OR dst,src Logical OR

XOR dst,src Logical exclusive OR

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-3

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

CALL dst Call procedure

IRET Interrupt return

JP cc,dst Jump on condition code

JP dst Jump unconditional

JR cc,dst Jump relative on condition code

RET Return

Bit Manipulation Instructions

TCM dst,src Test complement under mask

TM dst,src Test under mask

Rotate and Shift Instructions

RL dst Rotate left

RLC dst Rotate left through carry

RR dst Rotate right

RRC dst Rotate right through carry

SRA dst Shift right arithmetic

CPU Control Instructions

CCF Complement carry flag

DI Disable interrupts

EI Enable interrupts

IDLE Enter Idle mode

NOP No operation

RCF Reset carry flag

SCF Set carry flag

STOP Enter stop mode

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-4

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these
bits, FLAGS.4–FLAGS.7, can be tested and used with conditional jump instructions;

FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load
instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags
register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of
the AND instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two
write will occur to the Flags register producing an unpredictable result.

System Flags Register (FLAGS)
D5H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Carry flag (C)

Zero flag (Z)

Sign flag (S)

Overflow flag (V)

Not mapped

Figure 6-1. System Flags Register (FLAGS)

FLAG DESCRIPTIONS

33Overflow Flag (FLAGS.4, V)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than – 128.
It is also cleared to "0" following logic operations.

Sign Flag (FLAGS.5, S)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A
logic zero indicates a positive number and a logic one indicates a negative number.

Zero Flag (FLAGS.6, Z)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that
test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is logic zero.

Carry Flag (FLAGS.7, C)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7
position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register.
Program instructions can set, clear, or complement the carry flag.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-5

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description

C Carry flag

Z Zero flag

S Sign flag

V Overflow flag

0 Cleared to logic zero

1 Set to logic one

* Set or cleared according to operation

– Value is unaffected

x Value is undefined

Table 6-3. Instruction Set Symbols

Symbol Description

dst Destination operand

src Source operand

@ Indirect register address prefix

PC Program counter

FLAGS Flags register (D5H)

Immediate operand or register address prefix

H Hexadecimal number suffix

D Decimal number suffix

B Binary number suffix

opc Opcode

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-6

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range

cc Condition code See list of condition codes in Table 6-6.

r Working register only Rn (n = 0–15)

rr Working register pair RRp (p = 0, 2, 4, ..., 14)

R Register or working register reg or Rn (reg = 0–255, n = 0–15)

RR Register pair or working register pair reg or RRp (reg = 0–254, even number only, where
p = 0, 2, ..., 14)

Ir Indirect working register only @Rn (n = 0–15)

IR Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)

Irr Indirect working register pair only @RRp (p = 0, 2, ..., 14)

IRR Indirect register pair or indirect working
register pair

@RRp or @reg (reg = 0–254, even only, where
p = 0, 2, ..., 14)

X Indexed addressing mode #reg[Rn] (reg = 0–255, n = 0–15)

XS Indexed (short offset) addressing mode #addr[RRp] (addr = range – 128 to + 127, where
p = 0, 2, ..., 14)

XL Indexed (long offset) addressing mode #addr [RRp] (addr = range 0–8191, where
p = 0, 2, ..., 14)

DA Direct addressing mode addr (addr = range 0–8191)

RA Relative addressing mode addr (addr = number in the range + 127 to – 128 that
is an offset relative to the address of the next
instruction)

IM Immediate addressing mode #data (data = 0–255)

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-7

Table 6-5. Opcode Quick Reference

OPCODE MAP

LOWER NIBBLE (HEX)

– 0 1 2 3 4 5 6 7

U 0 DEC
R1

DEC
IR1

ADD
r1,r2

ADD
r1,Ir2

ADD
R2,R1

ADD
IR2,R1

ADD
R1,IM

P 1 RLC
R1

RLC
IR1

ADC
r1,r2

ADC
r1,Ir2

ADC
R2,R1

ADC
IR2,R1

ADC
R1,IM

P 2 INC
R1

INC
IR1

SUB
r1,r2

SUB
r1,Ir2

SUB
R2,R1

SUB
IR2,R1

SUB
R1,IM

E 3 JP
IRR1

SBC
r1,r2

SBC
r1,Ir2

SBC
R2,R1

SBC
IR2,R1

SBC
R1,IM

R 4 OR
r1,r2

OR
r1,Ir2

OR
R2,R1

OR
IR2,R1

OR
R1,IM

5 POP
R1

POP
IR1

AND
r1,r2

AND
r1,Ir2

AND
R2,R1

AND
IR2,R1

AND
R1,IM

N 6 COM
R1

COM
IR1

TCM
r1,r2

TCM
r1,Ir2

TCM
R2,R1

TCM
IR2,R1

TCM
R1,IM

I 7 PUSH
R2

PUSH
IR2

TM
r1,r2

TM
r1,Ir2

TM
R2,R1

TM
IR2,R1

TM
R1,IM

B 8 LD
r1, x, r2

B 9 RL
R1

RL
IR1

LD
r2, x, r1

L A CP
r1,r2

CP
r1,Ir2

CP
R2,R1

CP
IR2,R1

CP
R1,IM

LDC
r1, Irr2, xL

E B CLR
R1

CLR
IR1

XOR
r1,r2

XOR
r1,Ir2

XOR
R2,R1

XOR
IR2,R1

XOR
R1,IM

LDC
r2, Irr2, xL

C RRC
R1

RRC
IR1

LDC
r1,Irr2

LD
r1, Ir2

H D SRA
R1

SRA
IR1

LDC
r2,Irr1

LD
IR1,IM

LD
Ir1, r2

E E RR
R1

RR
IR1

LDCD
r1,Irr2

LDCI
r1,Irr2

LD
R2,R1

LD
R2,IR1

LD
R1,IM

LDC
r1, Irr2, xs

X F CALL
IRR1

LD
IR2,R1

CALL
DA1

LDC
r2, Irr1, xs

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-8

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP

LOWER NIBBLE (HEX)

– 8 9 A B C D E F

U 0 LD
r1,R2

LD
r2,R1

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

P 1 ↓ ↓ ↓ ↓ ↓ ↓

P 2

E 3

R 4

5

N 6 IDLE

I 7 ↓ ↓ ↓ ↓ ↓ ↓ STOP

B 8 DI

B 9 EI

L A RET

E B IRET

C RCF

H D ↓ ↓ ↓ ↓ ↓ ↓ SCF

E E CCF

X F LD
r1,R2

LD
r2,R1

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NOP

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-9

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump
instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set

0000 F Always false –

1000 T Always true –

0111 (1) C Carry C = 1

1111 (1) NC No carry C = 0

0110 (1) Z Zero Z = 1

1110 (1) NZ Not zero Z = 0

1101 PL Plus S = 0

0101 MI Minus S = 1

0100 OV Overflow V = 1

1100 NOV No overflow V = 0

0110 (1) EQ Equal Z = 1

1110 (1) NE Not equal Z = 0

1001 GE Greater than or equal (S XOR V) = 0

0001 LT Less than (S XOR V) = 1

1010 GT Greater than (Z OR (S XOR V)) = 0

0010 LE Less than or equal (Z OR (S XOR V)) = 1

1111 (1) UGE Unsigned greater than or equal C = 0

0111 (1) ULT Unsigned less than C = 1

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1

0011 ULE Unsigned less than or equal (C OR Z) = 1

NOTES:
1. It indicates condition codes that are related to two different mnemonics but which test the same flag.

For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;
after a CP instruction, however, EQ would probably be used.

2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-10

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM87Ri
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The
following information is included in each instruction description:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Shorthand notation of the instruction's operation

— Textual description of the instruction's effect

— Specific flag settings affected by the instruction

— Detailed description of the instruction's format, execution time, and addressing mode(s)

— Programming example(s) explaining how to use the instruction

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-11

ADC — Add with Carry

ADC dst,src

Operation: dst ← dst + src + c

The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected.
Two's-complement addition is performed. In multiple precision arithmetic, this instruction permits
the carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the
result is of the opposite sign; cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 12 r r

6 13 r lr

opc src dst 3 6 14 R R

6 15 R IR

opc dst src 3 6 16 R IM

Examples: Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = 0AH:

ADC R1,R2 → R1 = 14H, R2 = 03H

ADC R1,@R2 → R1 = 1BH, R2 = 03H

ADC 01H,02H → Register 01H = 24H, register 02H = 03H

ADC 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADC 01H,#11H → Register 01H = 32H

In the first example, destination register R1 contains the value 10H, the carry flag is set to "1", and
the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H
and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-12

ADD — Add

ADD dst,src

Operation: dst ← dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is
of the opposite sign; cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 02 r r

6 03 r lr

opc src dst 3 6 04 R R

6 05 R IR

opc dst src 3 6 06 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD R1,R2 → R1 = 15H, R2 = 03H

ADD R1,@R2 → R1 = 1CH, R2 = 03H

ADD 01H,02H → Register 01H = 24H, register 02H = 03H

ADD 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADD 01H,#25H → Register 01H = 46H

In the first example, destination working register R1 contains 12H and the source working register
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in
register R1.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-13

AND — Logical AND

AND dst,src

Operation: dst ← dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Always cleared to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 52 r r

6 53 r lr

opc src dst 3 6 54 R R

6 55 R IR

opc dst src 3 6 56 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

AND R1,R2 → R1 = 02H, R2 = 03H

AND R1,@R2 → R1 = 02H, R2 = 03H

AND 01H,02H → Register 01H = 01H, register 02H = 03H

AND 01H,@02H → Register 01H = 00H, register 02H = 03H

AND 01H,#25H → Register 01H = 21H

In the first example, destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-14

CALL — Call Procedure

CALL dst

Operation: SP ← SP – 1
@SP ← PCL
SP ← SP –1
@SP ← PCH
PC ← dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to
return to the original program flow. RET pops the top of the stack back into the program counter.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 3 14 F6 DA

opc dst 2 12 F4 IRR

Examples: Given: R0 = 15H, R1 = 21H, PC = 1A47H, and SP = 0B2H:

CALL 1521H → SP = 0B0H
(Memory locations 00H = 1AH, 01H = 4AH, where 4AH
is the address that follows the instruction.)

CALL @RR0 → SP = 0B0H (00H = 1AH, 01H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0B2H, the statement "CALL 1521H" pushes the current PC value onto the top of the stack.
The stack pointer now points to memory location 00H. The PC is then loaded with the value
1521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RR0" produces the same result except that the 49H is stored in stack
location 01H (because the two-byte instruction format was used). The PC is then loaded with the
value 1521H, the address of the first instruction in the program sequence to be executed.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-15

CCF — Complement Carry Flag

CCF

Operation: C ← NOT C

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

Flags: C: Complemented.

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 EF

Example: Given: The carry flag = "0":

CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),
changing its value from logic zero to logic one.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-16

CLR — Clear

CLR dst

Operation: dst ← "0"

The destination location is cleared to "0".

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 B0 R

4 B1 IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR 00H → Register 00H = 00H

CLR @01H → Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)
addressing mode to clear the 02H register value to 00H.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-17

COM — Complement

COM dst

Operation: dst ← NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are
changed to "0s", and vice-versa.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Always reset to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 60 R

4 61 IR

Examples: Given: R1 = 07H and register 07H = 0F1H:

COM R1 → R1 = 0F8H

COM @R1 → R1 = 07H, register 07H = 0EH

In the first example, destination working register R1 contains the value 07H (00000111B). The
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,
and vice-versa, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-18

CP — Compare

CP dst,src

Operation: dst – src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

Flags: C: Set if a "borrow" occurred (src > dst); cleared otherwise.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of
the result is of the same as the sign of the source operand; cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 A2 r r

6 A3 r lr

opc src dst 3 6 A4 R R

6 A5 R IR

opc dst src 3 6 A6 R IM

Examples: 1. Given: R1 = 02H and R2 = 03H:

CP R1,R2 → Set the C and S flags

Destination working register R1 contains the value 02H and source register R2 contains the
value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the
R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative,
C and S are "1".

2. Given: R1 = 05H and R2 = 0AH:

CP R1,R2
JP UGE,SKIP
INC R1

SKIP LD R3,R1

In this example, destination working register R1 contains the value 05H which is less than the
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C =
"1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"
executes, the value 06H remains in working register R3.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-19

DEC — Decrement

DEC dst

Operation: dst ← dst – 1

The contents of the destination operand are decremented by one.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, dst value is – 128 (80H) and result value is
+ 127 (7FH); cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 00 R

4 01 IR

Examples: Given: R1 = 03H and register 03H = 10H:

DEC R1 → R1 = 02H

DEC @R1 → Register 03H = 0FH

In the first example, if working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by
one, leaving the value 0FH.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-20

DI — Disable Interrupts

DI

Operation: SYM (2) ← 0

Bit zero of the system mode register, SYM.2, is cleared to "0", globally disabling all interrupt
processing. Interrupt requests will continue to set their respective interrupt pending bits, but the
CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 8F

Example: Given: SYM = 04H:

DI

If the value of the SYM register is 04H, the statement "DI" leaves the new value 00H in the
register and clears SYM.2 to "0", disabling interrupt processing.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-21

EI — Enable Interrupts

EI

Operation: SYM (2) ← 1

An EI instruction sets bit 2 of the system mode register, SYM.2 to "1". This allows interrupts to be
serviced as they occur. If an interrupt's pending bit was set while interrupt processing was
disabled (by executing a DI instruction), it will be serviced when you execute the EI instruction.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 9F

Example: Given: SYM = 00H:

EI

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 04H, enabling all interrupts. (SYM.2 is the enable bit for
global interrupt processing.)

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-22

IDLE — Idle Operation

IDLE

Operation:

The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 4 6F – –

Example: The instruction

IDLE

NOP

NOP

NOP

stops the CPU clock but not the system clock.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-23

INC — Increment

INC dst

Operation: dst ← dst + 1

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is dst value is + 127 (7FH) and result is – 128 (80H);
cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

dst | opc 1 4 rE r

r = 0 to F

opc dst 2 4 20 R

4 21 IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

INC R0 → R0 = 1CH

INC 00H → Register 00H = 0DH

INC @R0 → R0 = 1BH, register 01H = 10H

In the first example, if destination working register R0 contains the value 1BH, the statement "INC
R0" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on register 00H, assuming that it
contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value
of register 1BH from 0FH to 10H.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-24

IRET — Interrupt Return

IRET IRET

Operation: FLAGS ← @SP
SP ← SP + 1
PC ← @SP
SP ← SP + 2
SYM(2) ← 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts.

Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET
(Normal)

Bytes Cycles Opcode
(Hex)

opc 1 10 BF

12

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-25

JP — Jump

JP cc,dst (Conditional)

JP dst (Unconditional)

Operation: If cc is true, PC ← dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: No flags are affected.

Format: (1)

(2)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 3 8 ccD DA

cc = 0 to F

opc dst 2 8 30 IRR

NOTES:
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the

op code are both four bits.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP C,LABEL_W → LABEL_W = 1000H, PC = 1000H

JP @00H → PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-26

JR — Jump Relative

JR cc,dst

Operation: If cc is true, PC ← PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is now in the program
counter; otherwise, the instruction following the JR instruction is executed (See list of condition
codes).

The range of the relative address is + 127, – 128, and the original value of the program counter is
taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(note)

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

cc | opc dst 2 6 ccB RA

cc = 0 to F

NOTE: In the first byte of the two-byte instruction format, the condition code and the op code are each
four bits.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X → PC = 1FF7H

If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will
pass control to the statement whose address is now in the PC. Otherwise, the program instruction
following the JR would be executed.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-27

LD — Load

LD dst,src

Operation: dst ← src

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

dst | opc src 2 4 rC r IM

4 r8 r R

src | opc dst 2 4 r9 R r

r = 0 to F

opc dst | src 2 4 C7 r lr

4 D7 Ir r

opc src dst 3 6 E4 R R

6 E5 R IR

opc dst src 3 6 E6 R IM

6 D6 IR IM

opc src dst 3 6 F5 IR R

opc dst | src x 3 6 87 r x [r]

opc src | dst x 3 6 97 x [r] r

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-28

LD — Load

LD (Continued)

Examples: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:

LD R0,#10H → R0 = 10H

LD R0,01H → R0 = 20H, register 01H = 20H

LD 01H,R0 → Register 01H = 01H, R0 = 01H

LD R1,@R0 → R1 = 20H, R0 = 01H

LD @R0,R1 → R0 = 01H, R1 = 0AH, register 01H = 0AH

LD 00H,01H → Register 00H = 20H, register 01H = 20H

LD 02H,@00H → Register 02H = 20H, register 00H = 01H

LD 00H,#0AH → Register 00H = 0AH

LD @00H,#10H → Register 00H = 01H, register 01H = 10H

LD @00H,02H → Register 00H = 01H, register 01H = 02, register 02H = 02H

LD R0,#LOOP[R1] → R0 = 0FFH, R1 = 0AH

LD #LOOP[R0],R1 → Register 31H = 0AH, R0 = 01H, R1 = 0AH

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-29

LDC/LDE — Load Memory

LDC/LDE dst,src

Operation: dst ← src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory. The
assembler makes "Irr" or "rr" values an even number for program memory and odd an odd
number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

1. opc dst | src 2 10 C3 r Irr

2. opc src | dst 2 10 D3 Irr r

3. opc dst | src XS 3 12 E7 r XS [rr]

4. opc src | dst XS 3 12 F7 XS [rr] r

5. opc dst | src XLL XLH 4 14 A7 r XL [rr]

6. opc src | dst XLL XLH 4 14 B7 XL [rr] r

7. opc dst | 0000 DAL DAH 4 14 A7 r DA

8. opc src | 0000 DAL DAH 4 14 B7 DA r

9. opc dst | 0001 DAL DAH 4 14 A7 r DA

10. opc src | 0001 DAL DAH 4 14 B7 DA r

NOTES:
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.
2. For formats 3 and 4, the destination address "XS [rr]" and the source address "XS [rr]" are each one

byte.
3. For formats 5 and 6, the destination address "XL [rr]" and the source address "XL [rr]" are each two

bytes.
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set

of values, used in formats 9 and 10, are used to address data memory.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-30

LDC/LDE — Load Memory

LDC/LDE (Continued)

Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H, R4 = 00H, R5 = 60H; Program
memory locations 0061 = AAH, 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H =
88H. External data memory locations 0061H = BBH, 0103H = 5FH, 0104H = 2AH, 0105H =
7DH, and 1104H = 98H:

LDC R0,@RR2 ; R0 ← contents of program memory location 0104H
; R0 = 1AH, R2 = 01H, R3 = 04H

LDE R0,@RR2 ; R0 ← contents of external data memory location 0104H
; R0 = 2AH, R2 = 01H, R3 = 04H

LDC (note) @RR2,R0 ; 11H (contents of R0) is loaded into program memory
; location 0104H (RR2),
; working registers R0, R2, R3 → no change

LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
; location 0104H (RR2),
; working registers R0, R2, R3 → no change

LDC R0,#01H[RR4] ; R0 ← contents of program memory location 0061H
; (01H + RR4),
; R0 = AAH, R2 = 00H, R3 = 60H

LDE R0,#01H[RR4] ; R0 ← contents of external data memory location 0061H
; (01H + RR4), R0 = BBH, R4 = 00H, R5 = 60H

LDC (note) #01H[RR4],R0 ; 11H (contents of R0) is loaded into program memory location
; 0061H (01H + 0060H)

LDE #01H[RR4],R0 ; 11H (contents of R0) is loaded into external data memory
; location 0061H (01H + 0060H)

LDC R0,#1000H[RR2] ; R0 ← contents of program memory location 1104H
; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H

LDE R0,#1000H[RR2] ; R0 ← contents of external data memory location 1104H
; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H

LDC R0,1104H ; R0 ← contents of program memory location 1104H, R0 = 88H

LDE R0,1104H ; R0 ← contents of external data memory location 1104H,
; R0 = 98H

LDC (note) 1105H,R0 ; 11H (contents of R0) is loaded into program memory location
; 1105H, (1105H) ← 11H

LDE 1105H,R0 ; 11H (contents of R0) is loaded into external data memory
; location 1105H, (1105H) ← 11H

NOTE: These instructions are not supported by masked ROM type devices.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-31

LDCD/LDED — Load Memory and Decrement

LDCD/LDED dst,src

Operation: dst ← src

rr ← rr – 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD references program memory and LDED references external data memory. The assembler
makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 10 E2 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and
external data memory location 1033H = 0DDH:

LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one
; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ← RR6 – 1)

LDED R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 ← RR6 – 1)
; R8 = 0DDH, R6 = 10H, R7 = 32H

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-32

LDCI/LDEI — LOAD MEMORY AND INCREMENT

LDCI/LDEI dst,src

Operation: dst ← src

rr ← rr + 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler makes
"Irr" even for program memory and odd for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 10 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:

LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1)
; R8 = 0CDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1)
; R8 = 0DDH, R6 = 10H, R7 = 34H

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-33

NOP — No Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 FF

Example: When the instruction

NOP

is encountered in a program, no operation occurs. Instead, there is a delay in instruction
execution time.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-34

OR — Logical OR

OR dst,src

Operation: dst ← dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Always cleared to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 42 r r

6 43 r lr

opc src dst 3 6 44 R R

6 45 R IR

opc dst src 3 6 46 R IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and
register 08H = 8AH:

OR R0,R1 → R0 = 3FH, R1 = 2AH

OR R0,@R2 → R0 = 37H, R2 = 01H, register 01H = 37H

OR 00H,01H → Register 00H = 3FH, register 01H = 37H

OR 01H,@00H → Register 00H = 08H, register 01H = 0BFH

OR 00H,#02H → Register 00H = 0AH

In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result
(3FH) in destination register R0.

The other examples show the use of the logical OR instruction with the various addressing modes
and formats.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-35

POP — Pop From Stack

POP dst

Operation: dst ← @SP

SP ← SP + 1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

Flags: No flags affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 8 50 R

8 51 IR

Examples: Given: Register 00H = 01H, register 01H = 1BH, SP (0D9H) = 0BBH, and stack register
0BBH = 55H:

POP 00H → Register 00H = 55H, SP = 0BCH

POP @00H → Register 00H = 01H, register 01H = 55H, SP = 0BCH

In the first example, general register 00H contains the value 01H. The statement "POP 00H"
loads the contents of location 0BBH (55H) into destination register 00H and then increments the
stack pointer by one. Register 00H then contains the value 55H and the SP points to location
0BCH.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-36

PUSH — Push To Stack

PUSH src

Operation: SP ← SP – 1

@SP ← src

A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)
into the location addressed by the decremented stack pointer. The operation then adds the new
value to the top of the stack.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc src 2 8 70 R

8 71 IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SP = 0C0H:

PUSH 40H → Register 40H = 4FH, stack register 0BFH = 4FH,
SP = 0BFH

PUSH @40H → Register 40H = 4FH, register 4FH = 0AAH, stack register
0BFH = 0AAH, SP = 0BFH

In the first example, if the stack pointer contains the value 0C0H, and general register 40H the
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0C0 to 0BFH. It then
loads the contents of register 40H into location 0BFH. Register 0BFH then contains the value 4FH
and SP points to location 0BFH.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-37

RCF — Reset Carry Flag

RCF RCF

Operation: C ← 0

The carry flag is cleared to logic zero, regardless of its previous value.

Flags: C: Cleared to "0".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 CF

Example: Given: C = "1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-38

RET — Return

RET

Operation: PC ← @SP

SP ← SP + 2

The RET instruction is normally used to return to the previously executing procedure at the end of
a procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 8 AF

10

Example: Given: SP = 0BCH, (SP) = 101AH, and PC = 1234:

RET → PC = 101AH, SP = 0BEH

The statement "RET" pops the contents of stack pointer location 0BCH (10H) into the high byte of
the program counter. The stack pointer then pops the value in location 0BDH (1AH) into the PC's
low byte and the instruction at location 101AH is executed. The stack pointer now points to
memory location 0BEH.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-39

RL — Rotate Left

RL dst

Operation: C ← dst (7)

dst (0) ← dst (7)

dst (n + 1) ← dst (n), n = 0–6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is
moved to the bit zero (LSB) position and also replaces the carry flag.

C
7 0

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;
cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 90 R

4 91 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL 00H → Register 00H = 55H, C = "1"

RL @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if general register 00H contains the value 0AAH (10101010B), the statement
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)
and setting the carry and overflow flags.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-40

RLC — Rotate Left Through Carry

RLC dst

Operation: dst (0) ← C

C ← dst (7)

dst (n + 1) ← dst (n), n = 0–6

The contents of the destination operand with the carry flag are rotated left one bit position. The
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

C
7 0

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;
cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 10 R

4 11 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

RLC 00H → Register 00H = 54H, C = "1"

RLC @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC
00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the
initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B).
The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-41

RR — Rotate Right

RR dst

Operation: C ← dst (0)

dst (7) ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

C
7 0

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;
cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 E0 R

4 E1 IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR 00H → Register 00H = 98H, C = "1"

RR @01H → Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if general register 00H contains the value 31H (00110001B), the statement
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-42

RRC — Rotate Right Through Carry

RRC dst

Operation: dst (7) ← C

C ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

The contents of the destination operand and the carry flag are rotated right one bit position. The
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7
(MSB).

C
7 0

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".

Z: Set if the result is "0" cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation;
cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 C0 R

4 C1 IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC 00H → Register 00H = 2AH, C = "1"

RRC @01H → Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if general register 00H contains the value 55H (01010101B), the statement
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both
cleared to "0".

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-43

SBC — Subtract With Carry

SBC dst,src

Operation: dst ← dst – src – c

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C: Set if a borrow occurred (src > dst); cleared otherwise.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of
the result is the same as the sign of the source; cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 32 r r

6 33 r lr

opc src dst 3 6 34 R R

6 35 R IR

opc dst src 3 6 36 R IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register
03H = 0AH:

SBC R1,R2 → R1 = 0CH, R2 = 03H

SBC R1,@R2 → R1 = 05H, R2 = 03H, register 03H = 0AH

SBC 01H,02H → Register 01H = 1CH, register 02H = 03H

SBC 01H,@02H → Register 01H = 15H,register 02H = 03H, register 03H = 0AH

SBC 01H,#8AH → Register 01H = 95H; C, S, and V = "1"

In the first example, if working register R1 contains the value 10H and register R2 the value 03H,
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the
destination (10H) and then stores the result (0CH) in register R1.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-44

SCF — Set Carry Flag

SCF

Operation: C ← 1

The carry flag (C) is set to logic one, regardless of its previous value.

Flags: C: Set to "1".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 4 DF

Example: The statement

SCF

sets the carry flag to logic one.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-45

SRA — Shift Right Arithmetic

SRA dst

Operation: dst (7) ← dst (7)

C ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit
position 6.

C
7 06

Flags: C: Set if the bit shifted from the LSB position (bit zero) was "1".

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Always cleared to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 4 D0 R

4 D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":

SRA 00H → Register 00H = 0CD, C = "0"

SRA @02H → Register 02H = 03H, register 03H = 0DEH, C = "0"

In the first example, if general register 00H contains the value 9AH (10011010B), the statement
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the
value 0CDH (11001101B) in destination register 00H.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-46

STOP — Stop Operation

STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,
peripheral registers, and I/O port control and data registers are retained. Stop mode can be
released by an external reset operation or External interrupt input. For the reset operation, the

 pin must be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 4 7F – –

Example: The statement

LD STOPCON, #0A5H

STOP

NOP

NOP

NOP

halts all microcontroller operations. When STOPCON register is not #0A5H value, if you use
STOP instruction, PC is changed to reset address.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-47

SUB — Subtract

SUB dst,src

Operation: dst ← dst – src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of
the result is of the same as the sign of the source operand; cleared otherwise.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 22 r r

6 23 r lr

opc src dst 3 6 24 R R

6 25 R IR

opc dst src 3 6 26 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB R1,R2 → R1 = 0FH, R2 = 03H

SUB R1,@R2 → R1 = 08H, R2 = 03H

SUB 01H,02H → Register 01H = 1EH, register 02H = 03H

SUB 01H,@02H → Register 01H = 17H, register 02H = 03H

SUB 01H,#90H → Register 01H = 91H; C, S, and V = "1"

SUB 01H,#65H → Register 01H = 0BCH; C and S = "1", V = "0"

In the first example, if working register R1 contains the value 12H and if register R2 contains the
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination
value (12H) and stores the result (0FH) in destination register R1.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-48

TCM — Test Complement Under Mask

TCM dst,src

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
source operands are unaffected.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Always cleared to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 62 r r

6 63 r lr

opc src dst 3 6 64 R R

6 65 R IR

opc dst src 3 6 66 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TCM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "1"

TCM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TCM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "1"

TCM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
register 02H = 23H, Z = "1"

TCM 00H,#34 → Register 00H = 2BH, Z = "0"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one
and can be tested to determine the result of the TCM operation.

S3C9442/C9444/F9444/C9452/C9454/F9454 SAM88RCRI INSTRUCTION SET

6-49

TM — Test Under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Always reset to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 72 r r

6 73 r lr

opc src dst 3 6 74 R R

6 75 R IR

opc dst src 3 6 76 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "0"

TM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "0"

TM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
register 02H = 23H, Z = "0"

TM 00H,#54H → Register 00H = 2BH, Z = "1"

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for
a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero
and can be tested to determine the result of the TM operation.

SAM88RCRI INSTRUCTION SET S3C9442/C9444/F9444/C9452/C9454/F9454

6-50

XOR — Logical Exclusive OR

XOR dst,src

Operation: dst ← dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Always reset to "0".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 4 B2 r r

6 B3 r lr

opc src dst 3 6 B4 R R

6 B5 R IR

opc dst src 3 6 B6 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

XOR R0,R1 → R0 = 0C5H, R1 = 02H

XOR R0,@R1 → R0 = 0E4H, R1 = 02H, register 02H = 23H

XOR 00H,01H → Register 00H = 29H, register 01H = 02H

XOR 00H,@01H → Register 00H = 08H, register 01H = 02H, register 02H = 23H

XOR 00H,#54H → Register 00H = 7FH

In the first example, if working register R0 contains the value 0C7H and if register R1 contains the
value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value
and stores the result (0C5H) in the destination register R0.

