土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Abstract

General Description The MAX3440E-MAX3444E fault-protected RS-485 and $J 1708$ transceivers feature $\pm 60 \mathrm{~V}$ protection from signal faults on communication bus lines. Each device contains one differential line driver with three-state output and one differential line receiver with three-state input. The 1/4-unitload receiver input impedance allows up to 128 transceivers on a single bus. The devices operate from a 5 V supply at data rates of up to 10 Mbps . True fail-safe inputs guarantee a logic-high receiver output when the receiver inputs are open, shorted, or connected to an idle data line. Hot-swap circuitry eliminates false transitions on the data bus during circuit initialization or connection to a live backplane. Short-circuit current-limiting and thermal shutdown circuitry protect the driver against excessive power dissipation, and on-chip $\pm 15 \mathrm{kV}$ ESD protection eliminates costly external protection devices. The MAX3440E-MAX3444E are available in 8-pin SO and PDIP packages and are specified over industrial and automotive temperature ranges.

Applications
RS-422/RS-485 Communications
Truck and Trailer Applications
Industrial Networks
Telecommunications Systems
Automotive Applications
HVAC Controls

Features

- $\pm 15 k V$ ESD Protection
- $\pm 60 V$ Fault Protection
- Guaranteed 10Mbps Data Rate (MAX3441E/MAX3443E)
- Hot Swappable for Telecom Applications
- True Fail-Safe Receiver Inputs
- Enhanced Slew-Rate-Limiting Facilitates Error-Free Data Transmission (MAX3440E/MAX3442E/MAX3444E)
- Allow Up to 128 Transceivers on the Bus
- -7 V to +12 V Common-Mode Input Range
- Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
- Industry-Standard Pinout

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3440EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3440EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP
MAX3440EASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3440EAPA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 PDIP

Ordering Information continued at end of data sheet.

PART	TYPE	DATA RATE (Mbps)	LOW-POWER SHUTDOWN	RECEIVER/DRIVER ENABLE	TRANSCEIVERS ON BUS	HOT SWAP
MAX3440E	RS-485	0.25	No	Yes	128	
MAX3441E	$R S-485$	2.5 to 10	No	Yes	128	
MAX3442E	$R S-485$	0.25	Yes	Yes	128	Yes
MAX3443E	$R S-485$	2.5 to 10	Yes	Yes	128	Yes
MAX3444E	$J 1708$	0.25	Yes	Yes	128	Yes (only RE)

Pin Configurations and Typical Operating Circuits

土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Ranges	
MAX344_EE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX344_EA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature..	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

Note 1: A, B must be terminated with 54Ω or 100Ω to guarantee $\pm 60 \mathrm{~V}$ fault protection.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DRIVER							
Differential Driver Output	VOD	Figure 1, $\mathrm{RL}_{\mathrm{L}}=100 \Omega$		2		VCC	V
		Figure 1, $\mathrm{RL}_{\mathrm{L}}=54 \Omega$		1.5		VCC	
Change in Magnitude of Differential Output Voltage	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1, RL = 100Ω or 54Ω (Note 2)				0.2	V
Driver Common-Mode Output Voltage	VOC	Figure $1, \mathrm{RL}=100 \Omega$ or 54Ω			Vcc/2	3	V
Change in Magnitude of Common-Mode Voltage	$\Delta \mathrm{V}$ Oc	Figure 1, RL = 100Ω or 54Ω (Note 2)				0.2	V
DRIVER LOGIC							
Driver Input High Voltage	$\mathrm{V}_{\text {DIH }}$			2			V
Driver Input Low Voltage	V DIL					0.8	V
Driver Input Current	IDIN					± 2	$\mu \mathrm{A}$
Driver Short-Circuit Output Current (Note 3)	IOSD	$0 \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$				+350	mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$		-350			
Driver Short-Circuit Foldback Output Current	IOSDF	$\left(\mathrm{V}_{\text {cC }}-1 \mathrm{~V}\right) \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$ (Note 3)		+25			mA
		$-7 \mathrm{~V} \leq \mathrm{V}$ OUT $\leq+1 \mathrm{~V}$ (Note 3)				-25	
RECEIVER							
Input Current	${ }_{\text {I }, ~}$ B	A, B	$\mathrm{V}_{C C}=\mathrm{GND}, \mathrm{V}_{\mathrm{A}, \mathrm{B}}=12 \mathrm{~V}$			250	$\mu \mathrm{A}$
			$V_{A, B}=-7 \mathrm{~V}$			-150	
			$\mathrm{V}_{\mathrm{A}, \mathrm{B}}= \pm 60 \mathrm{~V}$			± 6	mA
Receiver Differential Threshold Voltage	$V_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		-200		-50	mV
Receiver Input Hysteresis	$\Delta^{1} \mathrm{~V}_{\text {TH }}$			25			mV

$\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
RECEIVER LOGIC					
Output High Voltage	V OH	Figure 2, $\mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA}$	$V_{\text {CC }}-0.6$		V
Output Low Voltage	VOL	Figure 2, $\mathrm{IOL}=1 \mathrm{~mA}$		0.4	V
Three-State Output Current at Receiver	Iozr	$0 \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq \mathrm{V}_{\mathrm{CC}}$		± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{VCM} \leq+12 \mathrm{~V}$	48		$\mathrm{k} \Omega$
Receiver Output Short-Circuit Current	IOSR	$0 \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$		± 95	mA

CONTROL

Control Input High Voltage	$\mathrm{V}_{\mathrm{CIH}}$	$\mathrm{DE}, \overline{\mathrm{DE}, \overline{\mathrm{RE}, \mathrm{DE} / \mathrm{RE}}}$	2	V
Input Current Latch During First Rising Edge	I N	$\mathrm{DE}, \mathrm{DE} / \mathrm{RE}, \overline{\mathrm{RE}}$	$\mu \mathrm{A}$	

SUPPLY CURRENT

Normal Operation	IQ	No load, $\mathrm{DI}=\mathrm{V}_{\mathrm{cc}}$ or GND	$\begin{aligned} & \mathrm{MAX} 3440 \mathrm{E}\left(\mathrm{DE} / \mathrm{RE}=\mathrm{VCC}_{\mathrm{CC}}\right), \\ & \mathrm{MAX} 3442 \mathrm{E}\left(\mathrm{DE}=\mathrm{V}_{\mathrm{CC}},\right. \\ & \overline{\mathrm{RE}}=\mathrm{GNDD}), \\ & \mathrm{MAX} 3444 \mathrm{E}(\overline{\mathrm{DE}}=\overline{\mathrm{RE}}=\mathrm{GND}) \end{aligned}$	30	mA
			MAX3441E (DE/RE = V_{CC}), MAX3443E ($D E=V_{C C}$, $\overline{\mathrm{RE}}=\mathrm{GND}$)	10	
Supply Current in Shutdown Mode	ISHDN	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, \overline{\mathrm{RE}}=\mathrm{VCC}(\mathrm{MAX} 3442 \mathrm{E} / \\ & \mathrm{MAX} 3443 \mathrm{E}) \end{aligned}$		20	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & (\text { MAX } 3442 \mathrm{E} / \mathrm{MAX} 3443 \mathrm{E}) \end{aligned}$		10	
		$\overline{\mathrm{DE}}=\overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}(\mathrm{MAX} 3444 \mathrm{E})$		100	
		$\overline{\mathrm{DE}}=\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}(\mathrm{MAX} 3444 \mathrm{E})$		10	
Supply Current with Output Shorted to $\pm 60 \mathrm{~V}$	ISHRT	DE $=G N D$ output in th	$\overline{\mathrm{RE}}=\mathrm{GND}$, no load ee-state (MAX3443E)	± 15	mA

PROTECTION SPECIFICATIONS

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Overvoltage Protection		A, B; RSOURCE $=0, \mathrm{RL}=54 \Omega$		± 60			V
ESD Protection		A, B	Human Body Model		± 15		kV
FAULT DETECTION							
Receiver Differential Threshold	FDIPH	$\mathrm{V}_{\mathrm{CM}}=0$, high limit		270		450	mV
Receiver Differential Threshold	FDIPL	$V_{C M}=0$, low limit		-450		-270	mV
Fault-Detection Common-Mode Input Voltage Positive				12			V
Fault-Detection Common-Mode Input Voltage Negative						-7	V

土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

SWITCHING CHARACTERISTICS (MAX3440E/MAX3442E/MAX3444E)

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	tpLHA, tPLHB	MAX3440E/MAX3442E, Figure 3, RL=54 $\Omega, C_{L}=50 \mathrm{pF}$		2000	ns
		MAX3444E, RDIFF $=60 \Omega$, CDIFF $=100 \mathrm{pF}$			
Driver Differential Propagation Delay	tDPLH, tDPHL	Figure 4, RL = 54 $\Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$		2000	ns
Driver Differential Output Transition Time	tLH,thL	Figure 4, RL = $54 \Omega, C_{L}=50 \mathrm{pF}$	200	2000	ns
Driver Output Skew	tskewab, tSKEWBA	$\begin{aligned} & \mathrm{RL}=54 \Omega, \mathrm{CL}=50 \mathrm{pF}, \\ & \text { tSKEWAB }=\text { ItPLHA }- \text { tPHLBl, } \\ & \text { tSKEWBA }=\text { ItpLHB - tpHLAl } \end{aligned}$		350	ns
Differential Driver Output Skew	tDSKEW	$\begin{aligned} & \mathrm{RL}=54 \Omega, C_{L}=50 \mathrm{pF}, \\ & \text { tDSKEW }=\text { ItDPLH - tDPHLI } \end{aligned}$		200	ns
Maximum Data Rate	$\mathrm{fmax}^{\text {m }}$		250		kbps
Driver Enable Time to Output High	tpdzH	Figure 5, $\mathrm{RL}_{\mathrm{L}}=500 \Omega, C_{L}=50 \mathrm{pF}$		2000	ns
Driver Disable Time from Output High	tpdHz	Figure 5, RL $=500 \Omega, C_{L}=50 \mathrm{pF}$		2000	ns
Driver Enable Time from Shutdown to Output High	tPDHS	Figure 5, RL $=500 \Omega, C_{L}=50 \mathrm{pF}$ (MAX3442E/MAX3444E)		4.2	$\mu \mathrm{s}$
Driver Enable Time to Output Low	tpDZL	Figure 6, $R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}$		2000	ns
Driver Disable Time from Output Low	tpdLz	Figure 6, $\mathrm{R}_{\mathrm{L}}=500 \Omega, C_{L}=50 \mathrm{pF}$		2000	ns
Driver Enable Time from Shutdown to Output Low	tPDLS	Figure 6, RL=500 $\Omega, C_{L}=50 \mathrm{pF}$ (MAX3442E/MAX3444E)		4.2	$\mu \mathrm{s}$
Driver Time to Shutdown	tSHDN	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ (MAX3442E/MAX3444E)		800	ns
Receiver Propagation Delay	tRPLH, trPHL	Figure 7, $\mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{V}_{\mathrm{ID}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$		2000	ns
Receiver Output Skew	trSKEW	$C_{L}=20 \mathrm{pF}, \mathrm{t}_{\text {RSKEW }}=\mathrm{ItRPLH}^{\text {- }}$ tRPHL ${ }^{\text {l }}$		200	ns
Receiver Enable Time to Output High	tRPZH	Figure 8, $\mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$		2000	ns
Receiver Disable Time from Output High	trPhz	Figure 8, $\mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$		2000	ns
Receiver Wake Time from Shutdown	trPWAKE	Figure 8, RL=1k $\Omega, C_{L}=20 \mathrm{pF}$ (MAX3442E/MAX3444E)		4.2	$\mu \mathrm{s}$
Receiver Enable Time to Output Low	trPZL	Figure 8, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$		2000	ns
Receiver Disable Time from Output Low	trPLZ	Figure 8, $\mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$		2000	ns
Receiver Time to Shutdown	tSHDN	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & (\text { MAX3442E/MAX3444E) } \end{aligned}$		800	ns

$\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

SWITCHING CHARACTERISTICS (MAX3441E/MAX3443E)

$\left(\mathrm{V}_{C C}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	tPLHA, tPLHB	Figure 3, RL = $27 \Omega, C_{L}=50 \mathrm{pF}$		60	ns
Driver Differential Propagation Delay	tDPLH, tDPHL	Figure 4, RL = $54 \Omega, C_{L}=50 \mathrm{pF}$		60	ns
Driver Differential Output Transition Time	tLH,thL	Figure 4, RL = $54 \Omega, C_{L}=50 \mathrm{pF}$		25	ns
Driver Output Skew	tskewab, tskewba	$\begin{aligned} & \mathrm{RL}=54 \Omega, \mathrm{CL}=50 \mathrm{pF}, \\ & \text { tSKEWAB }=\text { ItPLHA }- \text { tpHLBl, } \\ & \text { tSKEWBA }=\text { ItpLHB - tpHLAl } \end{aligned}$		10	ns
Differential Driver Output Skew	tDSKEW	$\begin{aligned} & \mathrm{RL}=54 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { tDSKEW }=\text { ItDPLH }- \text { tDPHLI } \end{aligned}$		10	ns
Maximum Data Rate	$f_{\text {max }}$		10		Mbps
Driver Enable Time to Output High	tPDZH	Figure 5, $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$		1200	ns
Driver Disable Time from Output High	tpDHZ	Figure 5, RL $=500 \Omega, C_{L}=50 \mathrm{pF}$		1200	ns
Driver Enable Time from Shutdown to Output High	tPDHS	Figure 5, RL = 500,$~ C L=50 p F(M A X 3443 E)$		4.2	$\mu \mathrm{s}$
Driver Enable Time to Output Low	tpDZL	Figure 6, $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		1200	ns
Driver Disable Time from Output Low	tpdLz	Figure 6, $\mathrm{RL}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		1200	ns
Driver Enable Time from Shutdown to Output Low	tPDLS	Figure 6, RL = 500 ${ }^{\text {, } C_{L}=50 \mathrm{pF}(\mathrm{MAX} 3443 \mathrm{E}) ~}$		4.2	$\mu \mathrm{s}$
Driver Time to Shutdown	tshDN	Figure 6, RL = 500, , $C_{L}=50 \mathrm{pF}$ (MAX3443E)		800	ns
Receiver Propagation Delay	$\begin{aligned} & \text { tRPLH, } \\ & \text { tRPHL } \end{aligned}$	Figure 7, $\mathrm{CL}=20 \mathrm{pF}, \mathrm{V} \mathrm{V} \mathrm{L}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$		85	ns
Receiver Output Skew	tRSKEW	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$, trskew $^{\text {a }}$ ItRPLH $-\mathrm{t}_{\text {RPHL }} \mathrm{I}$		15	ns
Receiver Enable Time to Output High	tRPZH	Figure 8, $\mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$		400	ns
Receiver Disable Time from Output High	tRPHZ	Figure 8, $\mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		400	ns
Receiver Wake Time from Shutdown	tRPWAKE	Figure 8, RL = 1k $\Omega, C L=20 \mathrm{pF}$ (MAX3443E)		4.2	$\mu \mathrm{s}$
Receiver Enable Wake Time from Shutdown	tRPSH	Figure 8, RL = $1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$		400	ns
Receiver Disable Time from Output Low	trPLZ	Figure 8, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$		400	ns
Receiver Time to Shutdown	tSHDN	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (MAX3443E)		800	ns

Note 2: $\Delta V_{O D}$ and $\Delta V_{O C}$ are the changes in $V_{O D}$ and $V_{O C}$, respectively, when the DI input changes state.
Note 3: The short-circuit output current applies to peak current just before foldback current limiting; the short-circuit foldback output current applies during current limiting to allow a recovery from bus contention.

$\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

$\left(\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

RECEIVER OUTPUT CURRENT
vs. OUTPUT LOW VOLTAGE

DRIVER OUTPUT CURRENT
vs. DIFFERENTIAL OUTPUT VOLTAGE

Typical Operating Characteristics

RECEIVER OUTPUT CURRENT
vs. OUTPUT HIGH VOLTAGE

DIFFERENTIAL OUTPUT VOLTAGE
vs. TEMPERATURE

SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE

RECEIVER OUTPUT VOLTAGE
vs. TEMPERATURE

A, B CURRENT
vs. A, B VOLTAGE (TO GROUND)

$\pm 15 k V$ ESD－Protected，$\pm 60 \mathrm{~V}$ Fault－Protected， 10Mbps，Fail－Safe RS－485／J1708 Transceivers

Test Circuits and Waveforms

Figure 1．Driver VOD and VOC

Figure 2．Receiver $V_{O H}$ and $V_{O L}$

Figure 3．Driver Propagation Times

Figure 4．Driver Differential Output Delay and Transition Times

ェ15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Figure 5. Driver Enable and Disable Times

Figure 6. Driver Enable and Disable Times

Figure 7. Receiver Propagation Delay

$\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Test Circuits and Waveforms (continued)

Figure 8. Receiver Enable and Disable Times
Note 4: The input pulse is supplied by a generator with the following characteristics: $f=5 \mathrm{MHz}, 50 \%$ duty cycle; $\operatorname{tr} \leq 6 n s ; Z_{0}=50 \Omega$. Note 5: CL_{L} includes probe and stray capacitance.

土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Pin Description

PIN			NAME	FUNCTION
MAX3440E MAX3441E	MAX3442E MAX3443E	MAX3444E		
1	-	-	FAULT	Fault output. $1=$ fault; $0=$ normal operation A or B under the following conditions: - A-B differential <200mV - A shorted to B - A shorted to a voltage within the common-mode range (detected only when the driver is enabled) - B shorted to a voltage within the common-mode range (detected only when the driver is enabled) - A or B outside the common-mode range
2	1	1	RO	Receiver Output. If receiver enabled and (A-B) $\geq-50 \mathrm{mV}$, $R O=$ high; if $(A-B) \leq-200 \mathrm{mV}, R O=$ low.
-	2	2	$\overline{\mathrm{RE}}$	Receiver Output Enable. Pull $\overline{\text { RE }}$ low to enable RO.
-	-	3	$\overline{\mathrm{DE}}$	Driver Output Enable. Pull $\overline{\mathrm{DE}}$ low to enable the outputs. Force $\overline{\mathrm{DE}}$ high to three-state the outputs. Drive $\overline{\mathrm{RE}}$ and $\overline{\mathrm{DE}}$ high to enter low-power shutdown mode.
3	-	-	DE/RE	Driver/Receiver Output Enable. Pull DE/RE low to threestate the driver output and enable RO. Force DE/RE high to enable driver output and three-state RO.
-	3	-	DE	Driver Output Enable. Force DE high to enable driver. Pull $\overline{\mathrm{DE}}$ low to three-state the driver output. Drive $\overline{\mathrm{RE}}$ high and pull DE low to enter low-power shutdown mode.
4	4	-	DI	Driver Input. A logic low on DI forces the noninverting output low and the inverting output high. A logic high on DI forces the noninverting output high and the inverting output low.
-	-	4	TXD	J1708 Input. A logic low on TXD forces outputs A and B to the dominant state. A logic high on TXD forces outputs A and B to the recessive state
5	5	5	GND	Ground
6	6	6	A	Noninverting Receiver Input/Driver Output
7	7	7	B	Inverting Receiver Input/Driver Output
8	8	8	VCC	Positive Supply, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V

$\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Function Tables

Table 1. MAX3440E/MAX3441E Fault Table

INPUTS		OUTPUTS		FAULT CONDITION
A-B VID DIFFERENTIAL INPUT VOLTAGE	COMMON-MODE voltage	RO	FAULT CONDITIONED BY DELAY	
$\geq 0.45 \mathrm{~V}$	$\leq 12 \mathrm{~V}$ and $\geq-7 \mathrm{~V}$	1	0	Normal operation
$<0.45 \mathrm{~V}$ and $\geq 0.27 \mathrm{~V}$		1	Indeterminate	Indeterminate
$<0.27 \mathrm{~V}$ and $\geq-0.05 \mathrm{~V}$		1	1	Low-input differential voltage
$\leq-0.05 \mathrm{~V}$ and $\geq-0.2 \mathrm{~V}$		Indeterminate (Note 1)	1	Low-input differential voltage
$\leq-0.2 \mathrm{~V}$ and $>-0.27 \mathrm{~V}$		0	1	Low-input differential voltage
$\leq-0.27 \mathrm{~V}$ and $>-0.45 \mathrm{~V}$		0	Indeterminate	Indeterminate
$\leq-0.45 \mathrm{~V}$		0	0	
X	<-7V or >+12V	Indeterminate	1	Outside common-mode voltage range

$X=$ Don't care .
Note 1: Receiver output may oscillate with this differential input condition.
Table 3. MAX3442E/MAX3443E
(RS-485/RS-422)
Table 2. MAX3440E/MAX3441E (RS-485/RS-422)

TRANSMITTING			
INPUTS		OUTPUTS	
DE/RE	DI	A	B
0	X	High-Z	High-Z
1	0	0	1
1	1	1	0

$X=$ Don't care.

Table 4. MAX3444E (J1708) Application

TRANSMITTING				
INPUTS		OUTPUTS		CONDITIONS
TXD	$\overline{\mathbf{D E}}$	A	B	-
0	1	High-Z	High-Z	-
1	1	High-Z	High-Z	-
0	0	1	0	Dominant state
1	0	High-Z	High-Z	Recessive state

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{D I}$	\mathbf{A}	\mathbf{B}
0	0	X	High-Z	High-Z
0	1	0	0	1
0	1	1	1	0
1	0	X	Shutdown	Shutdown
1	1	0	0	1
1	1	1	1	0

$X=$ Don't care.
Table 5. MAX3440E/MAX3441E (RS-485/RS-422)

RECEIVING		
INPUTS		OUTPUTS
DE/RE	(A - B)	RO
0	$\geq-0.05 \mathrm{~V}$	1
0	$\leq-0.2 \mathrm{~V}$	0
0	Open/shorted	1
1	X	High-Z

[^0]
土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Table 6. MAX3442E/MAX3443E
(RS-485/RS-422)

RECEIVING			
INPUTS			
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	(A - B)	RO
0	X	$\geq-0.05 \mathrm{~V}$	1
0	X	$\leq-0.2 \mathrm{~V}$	0
0	X	Open/shorted	1
1	1	X	High-Z
1	0	X	Shutdown

$X=$ Don't care.

Detailed Description

The MAX3440E-MAX3444E fault-protected transceivers for RS-485/RS-422 and J1708 communication contain one driver and one receiver. These devices feature failsafe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled (see the True Fail-Safe section). All devices have a hot-swap input structure that prevents disturbances on the differential signal lines when a circuit board is plugged into a hot backplane (see the Hot-Swap Capability section). The MAX3440E/MAX3442E/MAX3444E feature a reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 250 kbps (see the Reduced EMI and Reflections section). The MAX3441E/ MAX3443E drivers are not slew-rate limited, allowing transmit speeds up to 10 Mbps .

Driver

The driver accepts a single-ended, logic-level input (DI) and transfers it to a differential, RS-485/RS-422 level output (A and B). Deasserting the driver enable places the driver outputs (A and B) into a high-impedance state.

Receiver

The receiver accepts a differential, RS-485/RS-422 level input (A and B), and transfers it to a single-ended, logic-level output (RO). Deasserting the receiver enable places the receiver inputs (A and B) into a high-impedance state (see Tables 1-7).

Table 7. MAX3444E (RS-485/RS-422)

RECEIVING			
INPUTS			
$\overline{\mathbf{R E}}$	$\overline{\mathbf{D E}}$	(A - B)	RO
0	X	$\geq-0.05 \mathrm{~V}$	1
0	X	$\leq-0.2 \mathrm{~V}$	0
0	X	Open/shorted	1
1	0	X	High-Z
1	1	X	Shutdown

$X=$ Don't care .

Low-Power Shutdown

(MAX3442E/MAX3443E/MAX3444E)
The MAX3442E/MAX3443E/MAX3444E offer a low-power shutdown mode. Force DE low and $\overline{R E}$ high to shut down the MAX3442E/MAX3443E. Force $\overline{D E}$ and $\overline{R E}$ high to shut down the MAX3444E. A time delay of 50ns prevents the device from accidentally entering shutdown due to logic skews when switching between transmit and receive modes. Holding DE low and $\overline{R E}$ high for at least 800ns guarantees that the MAX3442E/MAX3443E enter shutdown. In shutdown, the devices consume a maximum $20 \mu \mathrm{~A}$ supply current.
$\pm 60 V$ Fault Protection
The driver outputs/receiver inputs of RS-485 devices in industrial network applications often experience voltage faults resulting from shorts to the power grid that exceed the -7 V to +12 V range specified in the EIA/TIA485 standard. In these applications, ordinary RS-485 devices (typical absolute maximum -8 V to +12.5 V) require costly external protection devices. To reduce system complexity and eliminate this need for external protection, the driver outputs/receiver inputs of the MAX3440E-MAX3444E withstand voltage faults up to $\pm 60 V$ with respect to ground without damage. Protection is guaranteed regardless whether the device is active, shut down, or without power.

True Fail-Safe
The MAX3440E-MAX3444E use a -50mV to -200mV differential input threshold to ensure true fail-safe receiver inputs. This threshold guarantees the receiver outputs a logic high for shorted, open, or idle data lines. The -50 mV to -200 mV threshold complies with the $\pm 200 \mathrm{mV}$ threshold EIA/TIA-485 standard.

$\pm 15 k V$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

$\pm 15 \mathrm{kV}$ ESD Protection
As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. The MAX3440E-MAX3444E receiver inputs/driver outputs (A, B) have extra protection against static electricity found in normal operation. Maxim's engineers have developed state-of-the-art structures to protect these pins against $\pm 15 \mathrm{kV}$ ESD without damage. After an ESD event, the MAX3440E-MAX3444E continue working without latchup.
ESD protection can be tested in several ways. The receiver inputs are characterized for protection to $\pm 15 \mathrm{kV}$ using the Human Body Model.

ESD Test Conditions

ESD performance depends on a number of conditions. Contact Maxim for a reliability report that documents test setup, methodology, and results.

Figure 9a. Human Body ESD Test Model

Human Body Model
Figure 9a shows the Human Body Model, and Figure 9 b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Driver Output Protection
Two mechanisms prevent excessive output current and power dissipation caused by faults or bus contention. The first, a foldback current limit on the driver output stage, provides immediate protection against short circuits over the whole common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+160^{\circ} \mathrm{C}$. Normal operation resumes when the die temperature cools to $+140^{\circ} \mathrm{C}$, resulting in a pulsed output during continuous short-circuit conditions.

Figure 9b. Human Body Model Current Waveform

土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Hot-Swap Capability

Hot-Swap Inputs

Inserting circuit boards into a hot, or powered, backplane may cause voltage transients on $D E, D E / R E, \overline{R E}$, and receiver inputs A and B that can lead to data errors. For example, upon initial circuit board insertion, the processor undergoes a power-up sequence. During this period, the high-impedance state of the output drivers makes them unable to drive the MAX3440E-MAX3444E enable inputs to a defined logic level. Meanwhile, leakage currents of up to $10 \mu \mathrm{~A}$ from the high-impedance output, or capacitively coupled noise from VCC or GND, could cause an input to drift to an incorrect logic state. To prevent such a condition from occurring, the MAX3440E-MAX3443E feature hot-swap input circuitry on DE, DE/RE, and $\overline{R E}$ to guard against unwanted driver activation during hot-swap situations. The MAX3444E has hot-swap input circuitry only on $\overline{R E}$. When Vcc rises, an internal pulldown (or pullup for RE) circuit holds DE low for at least $10 \mu \mathrm{~s}$, and until the current into DE exceeds $200 \mu \mathrm{~A}$. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.

Hot-Swap Input Circuitry

 At the driver-enable input (DE), there are two NMOS devices, M1 and M2 (Figure 10). When Vcc ramps from zero, an internal 15μ s timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2 mA current sink, and M1, a $100 \mu \mathrm{~A}$ current sink, pull DE to GND through a $5.6 \mathrm{k} \Omega$ resistor. M 2 pulls DE to the disabled state against an external parasitic capacitance up to 100 pF that may drive DE high. After $15 \mu \mathrm{~s}$, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakage currents that may drive DE high. M1 remains on until an external current source overcomes the required input current. At this time, the SR latch resets M1 and turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V_{CC} drops below 1V, the input is reset.A complementary circuit for $\overline{\mathrm{RE}}$ uses two PMOS devices to pull $\overline{\mathrm{RE}}$ to V_{CC}.

Applications Information

128 Transceivers on the Bus
The MAX3440E-MAX3444E transceivers 1/4-unit-load receiver input impedance ($48 \mathrm{k} \Omega$) allows up to 128 transceivers connected in parallel on one communication line. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32-unit loads to the line.

Reduced EMI and Reflections
The MAX3440E/MAX3442E/MAX3444E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 11 shows the driver output waveform and its Fourier analysis of a 125 kHz signal transmitted by a MAX3443E. High-frequency harmonic components with large amplitudes are evident.
Figure 12 shows the same signal displayed for a MAX3442E transmitting under the same conditions. Figure 12's high-frequency harmonic components are much lower in amplitude, compared with Figure 11's, and the potential for EMI is significantly reduced.

Figure 10. Simplified Structure of the Driver Enable Pin (DE)

$\pm 15 k V$ ESD－Protected，$\pm 60 \mathrm{~V}$ Fault－Protected， 10Mbps，Fail－Safe RS－485／J1708 Transceivers

In general，a transmitter＇s rise time relates directly to the length of an unterminated stub，which can be dri－ ven with only minor waveform reflections．The following equation expresses this relationship conservatively：

$$
\text { Length }=\text { tRISE } /(10 \times 1.5 \mathrm{~ns} / \mathrm{ft})
$$

where tRISE is the transmitter＇s rise time．
For example，the MAX3442E＇s rise time is typically 800ns，which results in excellent waveforms with a stub length up to 53 ft ．A system can work well with longer unterminated stubs，even with severe reflections，if the waveform settles out before the UART samples them．

RS－485 Applications

The MAX3440E－MAX3443E transceivers provide bidi－ rectional data communications on multipoint bus trans－ mission lines．Figures 13 and 14 show a typical network applications circuit．The RS－485 standard covers line lengths up to 4000ft．To minimize reflections and reduce data errors，terminate the signal line at both ends in its characteristic impedance，and keep stub lengths off the main line as short as possible．

Figure 11．Driver Output Waveform and FFT Plot of MAX3443E Transmitting a 125 kHz Signal

J1708 Applications The MAX3444E is designed for J 1708 applications．To configure the MAX3444E，connect $\overline{\mathrm{DE}}$ and $\overline{\mathrm{RE}}$ to GND． Connect the signal to be transmitted to TXD．Terminate the bus with the load circuit as shown in Figure 15．The drivers used by SAE J1708 are used in a dominant－ mode application．$\overline{\mathrm{DE}}$ is active low；a high input on $\overline{\mathrm{DE}}$ places the outputs in high impedance．When the driver is disabled（TXD high or $\overline{\mathrm{DE}}$ high），the bus is pulled high by external bias resistors R1 and R2．Therefore，a logic level high is encoded as recessive．When all transceivers are idle in this configuration，all receivers output logic high because of the pullup resistor on A and pulldown resistor on B．R1 and R2 provide the bias for the recessive state． C1 and C2 combine to form a 6 MHz lowpass filter，effec－ tive for reducing FM interference．R2，C1，R4，and C2 combine to form a 1.6 MHz lowpass filter，effective for reducing $A M$ interference．Because the bus is untermi－ nated，at high frequencies，R3 and R4 perform a pseudotermination．This makes the implementation more flexible，as no specific termination nodes are required at the ends of the bus．

Figure 12．Driver Output Waveform and FFT Plot of MAX3442E Transmitting a 125 kHz Signal

土15kV ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

Figure 13. MAX3440E/MAX3441E Typical RS-485 Network

Figure 14. MAX3442E/MAX3443E Typical RS-485 Network

Chip Information
TRANSISTOR COUNT: 310 PROCESS: BICMOS

Pin Configurations and Typical Operating Circuits (continued)

_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX3441EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3441EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP
MAX3441EASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3441EAPA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 PDIP
MAX3442EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3442EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP
MAX3442EASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3442EAPA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 PDIP
MAX3443ECSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3443ECPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PDIP
MAX3443EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3443EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP
MAX3443EASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3443EAPA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 PDIP
MAX3444EESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3444EEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 PDIP
MAX3444EASA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX3444EAPA	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 PDIP

$\pm 15 k V$ ESD－Protected，$\pm 60 \mathrm{~V}$ Fault－Protected， 10Mbps，Fail－Safe RS－485／J1708 Transceivers

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information， go to www．maxim－ic．com／packages．）

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.053	0.069	1.35	1.75		
A1	0.004	0.010	0.10	0.25		
B	0.014	0.019	0.35	0.49		
C	0.007	0.010	0.19	0.25		
e	0.050		BSC	1.27		BSC
E	0.150	0.157	3.80	4.00		
H	0.228	0.244	5.80	6.20		
L	0.016	0.050	0.40	1.27		

VARIATIONS：

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX	N	MS012
D	0.189	0.197	4.80	5.00	8	AA
D	0.337	0.344	8.55	8.75	14	AB
D	0.386	0.394	9.80	10.00	16	AC

SIDE VIEW

NOTES：
1．D\＆E DO NOT INCLUDE MOLD FLASH．
2．MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm （．006＂）．
3．LEADS TO BE COPLANAR WITHIN 0.10 mm （．004＂）．
4．CONTROLLING DIMENSION：MILLIMETERS．
5．MEETS JEDEC MSO12．
6． $\mathrm{N}=$ NUMBER OF PINS．

阬DEALLAS		
	21－0041	

$\pm 15 \mathrm{kV}$ ESD-Protected, $\pm 60 \mathrm{~V}$ Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: $X=$ Don't care.

